

Акционерное общество «Россети Научно-технический центр» Филиал АО «Россети Научно-технический центр» - СибНИИЭ

Опоры железобетонные из центрифугированных секционированных стоек ВЛ 330 кВ

Материалы для проектирования

7.330.ЖБ.01-МП

Состав материалов для проектирования

Обозначение	Наименование	Примечание
7.330.ЖБ.01–МП.01	Состав материалов для проектирования. Ведомость	
	ссылочных материалов	
7.330.ЖБ.01–МП.02	Общие данные	
7.330.ЖБ.01–МП.03	Обзорные листы	
	Промежуточные опоры	лист 1
	Анкерно-угловые опоры	лист 2
7.330.ЖБ.01–МП.04	Расчетные пролеты	
	Опора ПБ330н-1	лист 1
	Опора ПБ330н-2	лист 3
	Опора ПБ330н-3	лист 4
	Опора УБ330н-1	лист 5
7.330.ЖБ.01–МП.05	Расчетные нагрузки	
	Опора ПБ330н-1	лист 1
	Опора ПБ330н-2	лист 2
	Опора ПБ330н-3	лист 3
	Опора УБ330н-1	лист 4
7.330.ЖБ.01–МП.06	Расчетные листы	
	Опора ПБ330н-1	лист 1
	Опора ПБ330н-2	лист 4
	Опора ПБ330н-3	лист 7
	Опора УБ330н-1	лист 10
7.330.ЖБ.01–МП.07	Схемы отклонения изолирующих подвесок опор	
	ПБ330н–1, ПБ330н–2, ПБ330н–3	
7.330.ЖБ.01–МП.08	Схемы обводки шлейфов ЧБЗЗОн–1	
7.330.ЖБ.01–МП.09	Дополнительные узлы	

Согласовано

Ведомость ссылочных материалов

Обозначение	Наименование	Примечание
7.330.ЖБ.01–К	Каталог	
7.330.ЖБ.01-П3	Пояснительная записка	
7.330.ЖБ.01–КЖ1	Рабочие чертежи. Промежуточная опора ПБЗЗОн-1	
7.330.ЖБ.01–КЖ2	Рабочие чертежи. Промежуточная опора ПБ330н-2	
7.330.ЖБ.01–КЖЗ	Рабочие чертежи. Промежуточная опора ПБ330н–3	
7.330.ЖБ.01–КЖ4	Рабочие чертежи. Анкерно-угловая опора УБ330н-1	
7.330.ЖБ.01–НФ	Нагрузки на фундаменты	
7.330.ЖБ.01–ТК	Технологические карты на сборку и установку опор	
7.330.ЖБ.01–НР	Единые нормы и расценки на сборку и установку опор	

						7.330.ЖБ.01-МП.01										
Изм.	Кол. уч.	Nucm	№ док.	Подп.	Дата											
							Стадия	/lucm	Листов							
						Состав материалов для			1							
						проектирования. Ведомость		40								
						ссылочных материалов	технический									
						центр"-СибНИИЗ										

Глава 1. Основные исходные положения

- 1.1. Проект "Унифицированные железобетонные опоры ВЛ 220-500 кВ из центрифугированных секционированных стоек" разработан Филиалом АО «НТЦ ФСК ЕЭС» СибНИИЭ в соответствии с Техническим заданием на выполнение НИОКР для нужд ПАО «ФСК ЕЭС» № И-3-2003/20 от «19» марта 2021 г.
- 1.2. В настоящем документе представлены материалы для проектирования промежуточных и анкерно-угловых опор ВЛ напряжением 330 кВ, а также ссылки на рабочие чертежи проекта.
- 1.3. Опоры предназначены для установки в районах по ветру I-IV, по гололеду I-IV. При расположении ВЛ 330 кВ в районе по ветру I, в соответствии с требованием п. 2.5.41 ПУЭ 7 проектирование должно выполняться для II района. При расположении ВЛ 330 кВ в районе по гололеду I, в соответствии с требованием п. 2.5.46 ПУЭ 7, проектирование должно выполняться для II района.
 - 1.4. Опоры рассчитаны на подвеску:
- проводов (2 провода в одной фазе) по ГОСТ 839—2019 «Провода неизолированные для воздушных линий электропередачи» следующих марок: АС 240/32, АС 300/39, АС 400/51 и проводов нового поколения (ПНП) марок: АСПк 240/32, АСПк 300/39, АСК2у 300/39, АСВП 295/44.
- одного, либо двух грозозащитных тросов следующих марок: TK20-0/70-11.1мм-36кA2c-91кH по TY 3500-001-88083123-2014, ОКГТ-12-100 (характеристики ОКГТ, принятые для расчета опор, приведены в таблице 1).

На опорах возможна подвеска проводов, тросов (в т.ч. ОКГТ) других марок, с нагрузками, не превышающими принятых в расчетных схемах (см. 7.330.ЖБ.01-МП.05).

- 1.5. Конструкции анкерно-угловых опор разработаны с модификациями. Модификации отличаются друг от друга наличием/отсутствием оттяжек и дополнительных обводных траверс. Монтажная схема и конструктивные решения едины для всех модификаций опоры.
- 1.6. Конструкции опор разработаны в соответствии с действующими нормами проектирования:
 - ПУЭ 7-го издания;
- СП 20.13330.2016 «Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85*»;
- СП 63.13330.2018 «Бетонные и железобетонные конструкции. Основные положения. СНиП 52-01-2003»
- СП 16.13330.2017 «Стальные конструкции. Актуализированная редакция СНиП II—23—81*»;
- Приказ Минэнерго России от 31.08.2022 №884 «Об утверждении Методических указаний по технологическому проектированию линий электропередачи классом напряжения 35—750 кВ»;
- Положение ПАО «ФСК ЕЭС» «О единой технической политике в электросетевом комплексе».
- 1.7. Шифры опор проекта состоят из буквенной и цифровой частей и имеют вид записи X330н-Y.Z:
 - X mun onopы:
 - ПБ Промежуточная железобетонная;
 - ЧБ Анкерно-цгловая железобетонная;
 - 330 напряжение линии, для которой предназначена опора: 330 кВ;

- н новая унификация;
- Y— порядковый номер опоры: одноцепные опоры обозначаются нечетными числами; двухцепные— четными.
 - Z порядковый номер модификации (для анкерно угловых опор).

Принятые шифры опор:

- ПБ330н-1 промежуточная одностоечная свободностоящая одноцепная опора.
- ПБЗЗОн-2 промежуточная портальная свободностоящая двухцепная опора.
- ПБЗЗОн-З промежиточная портальная свободностоящая одноцепная опора
- УБ330н-1.1 анкерно-угловая трехстоечная свободностоящая одноцепная опора, применяемая для углов поворота ВЛ до 15°.
- УБ330н—1.1к— анкерно—угловая трехстоечная свободностоящая одноцепная опора, применяемая для углов поворота ВЛ до 15° с дополнительными обводными траверсами.
- УБ330н—1.2— анкерно—угловая трехстоечная одноцепная опора закрепляемая на отмяжках, применяемая для углов поворота ВЛ от 15° до 45°.
- УБ330н-1.2к анкерно-угловая трехстоечная одноцепная опора закрепляемая на отмяжках, применяемая для углов поворота ВЛ от 15° до 45° с дополнительными обводными траверсами.

Глава 2. Краткое описание конструкций опор

- 2.1. Железобетонные конструкции.
- 2.1.1. Стойки опор выполняются из тяжелого бетона класса по прочности на сжатие B60 марок: по морозостойкости F300, по водонепроницаемости W8.

Подпятники выполняются из вибрированного бетона класса по прочности на сжатие B25, марок: по морозостойкости F200, по водонепроницаемости W6.

- 2.1.2. В качестве напрягаемой продольной арматуры применяется арматурный канат К7 с временным сопротивлением (классом прочности) не менее 1770 H/мм² по ГОСТ Р 53772-2010.
- В качестве ненапрягаемой продольной арматуры применяется стальной арматурный прокат периодического профиля класса A500C, A600C, A800C, A1000C по ГОСТ 32028-2016.

Для изготовления монтажных колец применяется стальной арматурный прокат периодического профиля класса A240C по ГОСТ 32028-2016.

В качестве поперечной арматуры (спирали) применяется холоднотянутая проволока периодического профиля из низкоуглеродистой стали класса Bp-I по ГОСТ 6727—80.

Изм.	Кол. уч.	/lucm	№ док.	Подп.	Дата	7.330.ЖБ.01-М	Π.02				
							Стадия	/lucm	Листов		
								1	5		
						Общие данные	Филиал АО "Россети Научно-техниче центр"-СибНИИЭ				

- 2.1.3. Рабочие чертежи КЖ содержат опалубочный чертеж, арматурный каркас стойки, фланцы и закладные детали (см. 7.330.ЖБ.01-КЖ1.ЦСС1, 7.330.ЖБ.01-КЖ2.ЦСС1, 7.330.ЖБ.01-КЖ2.ЦСС1).
- 2.1.4. На железобетонных стойках опор предусмотрены закладные детали для выполнения заземления. При изготовлении железобетонных стоек необходимо выполнять проверку электрической связи между закладными деталями и флажком заземляющего устройства. Узлы заземления приведены на чертежах 7.330.ЖБ.01-МП.09.
- 2.1.5. Все металлические детали стойки, находящиеся в непосредственном контакте с окружающей средой подлежат горячему цинкованию в соответствии с главой 4.
 - 2.2. Металлические конструкции, детали.
- 2.2.1. Материал конструкций сталь C245, C255, C345 и C355 по ГОСТ 27772—2021 и Cm.20 по ГОСТ 8732—78.

Марки стали, толщины фасонного и листового проката, принятые по результатам расчетов опор из условия обеспечения несущей способности элементов, независимо от расчетной температуры приведены в таблицах «Выборка металла» на монтажных схемах опор 7.330.ЖБ.01-КЖ1.МС, 7.330.ЖБ.01-КЖ2.МС, 7.330.ЖБ.01-КЖ3.МС, 7.330.ЖБ.01-КЖ4.МС для металлических конструкций опоры и в таблицах «Ведомость расхода стали» для закладных деталей стоек 7.330.ЖБ.01-КЖ1.ЦСС1, 7.330.ЖБ.01-КЖ1.ЦСС2 7.330.ЖБ.01-КЖ2.ЦСС2, 7.330.ЖБ.01-КЖ3.ЦСС1, 7.330.ЖБ.01-КЖ4.ЦСС1.

Категории и марки сталей необходимо принимать по таблице В.1 СП 16.13330.2017 и таблицам 3-5 ГОСТ 27772-2021 в зависимости от расчетной температуры района строительства согласно п. 4.2.3 СП 16.13330.2017.

2.2.2. Для болтовых соединений элементов опор применяются болты классов прочности 5.8, 8.8 и 10.9. Классы прочности крепежных изделий, принятые из условия обеспечения несущей способности, независимо от расчетной температуры.

Классы прочности болтов должны быть уточнены в зависимости от расчетной температуры района строительства по таблице Г.З СП 16.13330.2017.

Для болтовых соединений следует применять стальные болты, гайки и шайбы, удовлетворяющие техническим требованиям действующих нормативных документов и стандартов.

Отверстия для болтовых соединений в сборных элементах следует производить продавливанием, сверлением или продавливанием на меньший диаметр, с последующей рассверловкой до проектного диаметра согласно указаний в рабочих чертежах с соблюдением требований раздела 8 СП 53-101-98 «Изготовление и контроль качества стальных строительных конструкций».

Сварные соединения элементов предусмотрено выполнять электродами 350, 350A по ГОСТ 9467-75. Материалы для соединения стальных элементов должны быть уточнены и приняты в зависимости от расчетной температуры района строительства по таблице Г.1 СП 16.13330.2017.

2.2.3. Состав болтового соединения опор ВЛ должен быть следиющим:

Для фланцевых соединений – «Болт + шайба + фланец + фланец + шайба + гайка + + гайка».

Для крепления траверс, тросостек и гибких связей к ЖБ стойкам – «Шпилька + зайка + гайка + квадратная шайба + элемент траверсы (тросостойки, гибкой связи) +

- + ЖБ стойка + элемент траверсы (тросостойки, гибкой связи) + квадратная шайба +
- + εαύκα + εαύκα».

Для остальных соединений – «Болт + шайба + элемент опоры + пружинная шайба + + гайка».

2.2.4. Узлы металлических конструкций, а также узлы крепления проводов и тросов разработаны для промежуточных опор и приведены на чертежах 7.330.ЖБ.01-КЖ1.МС, 7.330.ЖБ.01-КЖ2.МС, 7.330.ЖБ.01-КЖ3.МС проекта.

Крепление подвесных изолирующих подвесок для проводов на промежуточных опорах предусмотрено при помощи подвесных узлов крепления типа КГП. Для установки скоб на траверсах и стволе опоры предусмотрены детали с ребрами, в которых выполняются отверстия диаметром 25 мм для КГП-21-2.

На тросостойках промежуточных опор предусмотрены консольные элементы с отверстиями для крепления тросов при помощи подвесного узла крепления типа КГП. Отверстия выполняются диаметром 21,5 мм для КГП—12—1.

2.2.5. Узлы металлических конструкций, а также узлы крепления проводов и тросов разработаны для анкерно-угловых опор и приведены на чертежах 7.330.ЖБ.01-КЖ4.МС проекта.

Крепление натяжных изолирующих подвесок для проводов на анкерно-угловых опорах предусмотрено при помощи скоб СК-30-1А. Для установки скоб на траверсах и стволе опоры предусмотрены детали с ребрами, в которых имеются отверстия диаметром 37 мм.

На тросостойках анкерно-угловых опор предусмотрены детали с ребрами, в которых имеются отверстия диаметром 23 мм, для крепления тросов при помощи скоб СК-12-1A.

- 2.2.6. Для промежуточных опор на железобетонных стойках предусмотрены места крепления ОКСН. Узлы крепления ОКСН приведены на чертежах 7.330.ЖБ.01–МП.09.
- 2.2.7. При проектировании конкретной ВЛ переход на арматуру необходимого тоннажного ряда допускается выполнить: при помощи переходных звеньев; либо при проектировании конкретной ВЛ в рабочей документации разработать чертеж с требуемым расположением и диаметром отверстий для изготовления узла крепления необходимого тоннажного ряда.
- 2.2.8. Опоры УБ330н-1.2 и УБ330н-1.2к разработаны с оттяжками. Для опор предусмотрены по две оттяжки для каждой стойки опоры и располагаются с внешней стороны угла поворота трассы ВЛ. Фундаменты оттяжек закреплены на расстоянии 8.0 м от оси ВЛ и на расстоянии 4.0 м от оси траверс в каждую сторону. Каждая оттяжка выполнена из двух канатов диаметром 18.0 мм скрученных между собой по длине. Схема расположения оттяжек приведена на чертеже 7.330.ЖБ.01-КЖ4.МС.

Предварительное натяжение оттяжек, назначается проектными организациями при проектировании конкретной ВЛ. Предварительное натяжение оттяжек должно компенсировать тяжение от проводов и тросов в среднеэксплуатационном режиме.

- 2.2.8. Вертикальные и горизонтальные расстояния между проводами приняты в соответствии с требованиями пп. 2.5.86 2.5.95 ПУЭ 7. Все конструкции опор допускают подъем по стволу монтажника до верха под напряжением.
- 2.2.9. Для обеспечения подъема обслуживающего персонала по опоре предусмотрены стационарные лестничные конструкции от основания до вершины опоры.

Схема установки лестниц приведена на чертежах 7.330.ЖБ.01-КЖ1.Л, 7.330.ЖБ.01-КЖ2.Л, 7.330.ЖБ.01-КЖ3.Л, 7.330.ЖБ.01-КЖ4.Л проекта.

Изм.	Кол. ич.	/lucm	№ док.	Подп.	/lama

7.330.ЖБ.01-МП.02

/luci

- 2.2.10. Для обеспечения безопасного подъема на стационарных лестницах предусмотрены дополнительные отверстия для возможности крепления страховочной системы. Страховочная система не входит в состав проекта и должна учитываться в проекте ВЛ.
- 2.2.11. При помощи талрепов типа ПТР создать предварительное натяжение в гибких связях достаточное для исключения их провисания от воздействия собственного веса.
- 2.2.12. Все металлические элементы конструкций опор подлежат горячему цинкованию в соответствии с главой 4. С учетом габаритов ванн для цинкования максимальная длина сварных и отдельных элементов не превышает 12 м.
- 2.3. Конструкции опор изготавливаются в соответствии с требованиями СТО 56947007-29.120.90.247-2017 "Железобетонные опоры ВЛ 35-750 кВ на базе центрифугированных секционированных стоек. Технические требования" и СТО 34.01-2.2-020-2017 "Железобетонные опоры для воздушных линий 110-500 кВ. Общие технические требования".

Глава З. Указания по применению опор

3.1. Выбор конструкций унифицированных железобетонных опор для линий, проходящих в районах климатических условий, указанных в п. 1.3 настоящего тома производится непосредственно по обзорному листу (см. 7.330.ЖБ.01-МП.03).

Опоры рассчитаны на подвеску проводов марок: AC 240/32, AC 300/39, AC 400/51, ACПк 240/32, ACПк 300/39, ACк2ц 300/39, ACBП 295/44 (по 2 провода в одной фазе).

Опоры рассчитаны на подвеску грозозащитных тросов марок: TK20-0/70-11.1мм-36кA2c-91кH и OKFT-12-100.

3.2. При расчете опор в проекте региональные коэффициенты по ветру и гололеду приняты равными 1,0.

Коэффициенты надежности по ответственности приняты равными:

- 1,1 при расчете ветровой нагрузки;
- 1,3 при расчете гололедной нагризки.

Коэффициенты, учитывающие изменение ветрового давления по высоте приняты для типа местности А.

Ταδλυμα 1

Наименование характеристики	0КГТ-12-100	0KCH-15.5-75
Номинальный диаметр троса/кабеля, мм	12	15,5
Вес троса/кабеля, кг/км	550	200
Максимальная прочность на разрыв (МПР), кН	100	75
Макс. допустимая растягивающая нагрузка (МДРН), кН	60	30
Среднеэксплуатационная нагрузка (СЭН), кН	30	21
σ _{доп} в режиме максимальных нагрузок, кгс∕мм²	76,5	16,53
σ _{доп} в среднеэксплуатационном режиме, кгс/мм ²	38,2	11,57
Полное сечение mpocα/καδеля, мм²	80	185
Модуль упругости (конечный), кН/мм ²	155	17,2
ТКЛР, 10(-6) 1/K	12,4	2,7

3.3. Напряжения в проводах по ГОСТ 839-80 приняты в соответствии с таблицей 2.5.7 главы 2.5 ПУЭ 7. Напряжения в проводах нового поколения (ПНП), а также ТК и ОКГТ приняты в соответствии с ТУ изготовителей.

Характеристики ОКГТ, принятые для расчета приведены в таблице 1.

- 3.4. Максимально допустимые напряжения в проводах и грозозащитных тросах по прочности опоры приведены в таблицах расчетных пролетов 7.330.ЖБ.01-П3.01.
- 3.5. Максимальные нагрузки от проводов и тросов, а также ветровые на конструкцию опоры приведены на схемах расчетных нагрузок для соответствующего типа опоры (см. 7.330.ЖБ.01-МП.05).
- 3.6. Разработанные унифицированные опоры рассчитаны на установку в районах с умеренной пляской проводов. Допускается применять опоры в районах с частой и интенсивной пляской проводов с пролетами, полученными по результатам расчета смещения проводов и тросов при пляске. Также допускается принимать пролеты по результатам расчетов, обосновывающих применение специальных устройств для снижения эффекта пляски, обеспечивающих соблюдение изоляционных расстояний между фазами проводов и между проводами и тросами в пролетах опор.
- 3.7. При расчете опор на базовые условия значения ветровых (Lветр) и весовых (Lвес) пролетов приняты:

Lbemp=1.0xLzαδ; Lbec=1.25xLzαδ.

При расстановке опор следует руководствоваться таблицами расчетных пролетов 7.330.ЖБ.01-МП.04, а также рекомендуется принимать ветровые пролеты не более 1.4хLгаб и весовые не более 2хLгаб.

- 3.8. Указания по применению промежуточных опор:
- 3.8.1. При определении габаритных пролетов для промежуточных опор, указанных в 7.330.ЖБ.01-МП.04, длина поддерживающей гирлянды изоляторов принята равной 2.8 м.
- 3.8.2. Длины поддерживающих изолирующих подвесок приняты из условий обеспечения длины пути утечки изоляции согласно главе 1.9 ПУЭ 7, для 1-й СЗА и соблюдения изоляционных расстояний от токоведущих до заземленных частей опоры согласно таблице 2.5.17 ПУЭ 7 и таблицы 1, Приказа Минтруда России от 15.12.2020 N 903н «Об утверждении Правил по охране труда при эксплуатации электроустановок».
- 3.8.3. При проектировании конкретной ВЛ, длина изолирующей подвески должна быть принята в зависимости от СЗА, с учетом требований по обеспечению изоляционных расстояний.
- 3.8.4. Для промежуточных опор длины изолирующих подвесок приняты в соответствии со схемами приведенными на чертежах 7.330.ЖБ.01-МП.07.
- 3.8.5. При длине изолирующей подвески более 2,8 м следует уточнять габаритные пролеты. При меньшей длине изолирующей подвески допускается использовать габаритные пролеты, приведенные в таблицах расчетных пролетов см. 7.330.ЖБ.01-МП.04, при этом, следует проверить соблюдение угла грозозащиты проводов на конкретных опорах с учетом фактической длины подвески троса.
- 3.8.6. В случаях применения опор в расчетных условиях, рассматриваемых в проекте с пролетами и нагрузками равными указанным на схемах загружений, угол поворота ВЛ на промежуточных опорах не допускается. При установке опор с меньшими показателями расчетных условий (меньшими климатическими районами, пролетами, нагрузками на опоры) угол поворота ВЛ на промежуточных опорах допускается

Изм	Кол. ич.	/lucm	Ŋ₀ yuk	Подп	/lama

7.330.ЖБ.01-МП.02

/lucm

определять из учета обеспечения: несущей способности элементов опор, изоляционных расстояний при отклонении изолирующих подвесок, в том числе с учетом равнодействующей от тяжения проводов, тросов и оптических кабелей.

- 3.8.7. Для промежуточных опор предусмотрена возможность подвески одного оптического кабеля ОКСН-15.5-75 с характеристиками, приведенными в таблице 1. При этом, необходимо выполнить проверку конструкций опоры по несущей способности и, при необходимости, снизить ветровой и весовой пролеты.
- 3.8.8. Двухцепная промежуточная опора ПБ330н-2 может быть использована для подвески проводов одной цепи.
 - 3.9. Указания по применению анкерно угловых опор:
- 3.9.1. Длины натяжных изолирующих подвесок для анкерно-угловых опор приняты в соответствии со схемами 7.330.ЖБ.01-МП.08.
- 3.9.2. Длины натяжных и обводных изолирующих подвесок приняты из условий обеспечения длины пути утечки изоляции согласно главе 1.9 ПУЭ 7, для 1-й СЗА и соблюдения изоляционных расстояний от токоведущих до заземленных частей опоры согласно таблице 2.5.17 ПУЭ 7 и таблицы 1, Приказа Минтруда России от 24.07.2013 N 328н «Об утверждении Правил по охране труда при эксплуатации электроустановок».
- 3.9.3. При проектировании конкретной ВЛ длина изолирующей подвески должна быть принята в зависимости от СЗА, с учетом требований по обеспечению изоляционных расстояний.
- 3.9.4. Указания о необходимости обводки шлейфов через поддерживающие изолирующие подвески, установленные на концах траверс, представлены на схемах обводки шлейфов 7.330.ЖБ.01-МП.08. В случаях, не оговоренных на схемах обводки шлейфов 7.330.ЖБ.01-МП.08, следует проверять воздушные промежутки от провода до элементов конструкции опоры.
- 3.9.5. При нарушении изоляционных расстояний рекомендуется использовать для крепления проводов натяжные изолирующие подвески меньшей или большей длины, изменить угол поворота ВЛ, выполнить обводку шлейфов при помощи поддерживающих изолирующих подвесок.
- 3.9.6. Анкерно угловые опоры необходимо устанавливать таким образом, чтобы траверса для обводки шлейфа провода располагалась с внутренней стороны угла поворота трассы ВЛ.
- 3.9.7. Для анкерно-угловых опор на время монтажа проводов в одном из пролетов, для исключения одностороннего тяжения, необходимо предусмотреть оттяжки или другие удерживающие устройства для фиксации опоры в проектном положении. Мероприятия по фиксации опор при одностороннем тяжении разработать при проектировании ВЛ. Натяжение оттяжек (удерживающих устройств) должно компенсировать тяжение от проводов и тросов в монтажном режиме.
- 3.9.8. Для закрепления отмяжек опор УБЗЗОн-1.2 и УБЗЗОн-1.2к рекомендуется применять фундаменты с вынесенным над землей узлом крепления согласно Приказа Минэнерго России от 31.08.2022 №884 «Об утверждении Методических указаний по технологическому проектированию линий электропередачи классом напряжения 35-750 кВ». При этом допускается применение фундаментов (анкерных плит) с узлом крепления отмяжек, расположенным ниже уровня земли.
- 3.10. Опоры рассчитаны на проектное землетрясение 8 баллов, при K1=1.0 и m_{tr} принятом для расчетной температуры не ниже минус 40° С, где K1- коэффициент, допускающий повреждение сооружения и $m_{tr}-$ коэффициент условий работы, принимаемые согласно таблицам 5.2 и 5.4 СП 14.13330.2018 "Строительство в сейсмических районах" соответственно.

- 3.11. При проектировании ВЛ необходимо проверять конструкции опор по несущей способности и на соблюдение изоляционных расстояний, в следующих случаях:
 - при превышении расчетных нагрузок на опоры;
- при применении на ВЛ проводов, тросов и ОКГТ других марок, с характеристиками отличными от рассматриваемых;
 - при применении на ВЛ ОКСН;
- при использовании опор в климатических районах, отличных от расчетных, в том числе при значениях региональных коэффициентов и коэффициентов надежности по ответственности более цказанных в п. 3.1;
- если длины фактических пролетов превышают значения, указанные в таблицах расчетных пролетов 7.330.ЖБ.01-МП.04.
 - при превышении принятых расчетных напряжений в проводах, тросах и ОКГТ;
 - при применении промежиточных опор с углом поворота
 - при установке анкерно-угловых опор на углах поворота ВЛ более указанных;
 - при установке анкерно-угловых опор не по биссектрисе углах поворота ВЛ;
 - при установке анкерно-угловых опор с разностью тяжений в смежных пролетах;
 - при установке анкерно-угловых опор в концевых режимах;
 - при установке анкерно-угловых опор с отрицательными весовыми пролетами.
- 3.12. В случаях превышения нагрузок, указанных на схемах загружений, требуется снизить напряжения в проводах и тросах, либо ограничить величины расчетных пролетов, в зависимости от расчетных нагрузок соответствующих опор.
- 3.13. В случаях превышения нагрузок, указанных на схемах загружений, допускается применять типы опор, рассчитанные на более тяжелые расчетные условия, но при согласовании с Заказчиком и при наличии технико-экономического обоснования. При выборе типов опор для более тяжелых расчетных условий, чем принятые в проекте, необходимо учитывать, что применение опор с пролетами менее габаритного неэкономично и нежелательно. Выбор типов опор следует производить в привязке к выбору варианта трассы и принимать решение на основании технико-экономического сравнения, а также на основании технической необходимости.
- 3.14. На опорах предусмотрена установка ОПН для верхней фазы на стационарные места крепления. Схемы установки ОПН на опорах представлены на чертежах 7.330.ЖБ.01—П3.05.

Необходимость установки ОПН (в т.ч. для ВЛ в бестросовом исполнении), а также расчетные показатели грозоупорности и необходимость применения дополнительных мер по их улучшению должны определяться проектом в зависимости от фактических внешних условий и характеристик ВЛ.

- 3.15. Установка на опорах ВЛ информационных знаков определяется Проектной документацией на ВЛ в соответствии с действующей нормативно-технической документацией.
- 3.16 Монтаж опор производится в соответствии с требованиями СП 76.13330.2016 «Электротехнические устройства. Актуализированная редакция СНиП 3.05.06-85», а также по типовым технологическим картам.
- 3.17. При монтаже опор и проводов должны соблюдаться общие правила техники безопасности в строительстве согласно:

Изм.	Кол. цч.	/lucm	№ док.	Подп.	Дата

7.330.ЖБ.01-МП.02

/lucm

- Приказ Минтруда России от 16.11.2020 N 782н «Правила по охране труда при работе на высоте»;
- Приказ Минтруда России от 11.12.2020 N 883н «Правила по охране труда в строительстве, реконструкции и ремонте»;
- CO 34.03.285—2002 (РД 153—34.3—03.285—2002) «Правила безопасности при строительстве линий электропередачи и производстве электромонтажных работ»;
- Приказ Минтруда России от 27.11.2020 № 835н «Об утверждении Правил по охране труда при работе с инструментом и приспособлениями»;
- CO 34.03.151—2004 «Инструкция по безопасному производству работ электромонтажниками на объектах электроэнергетики»;
- Приказ Минтруда России от 15.12.2020 N 903н «Правила по охране труда при эксплуатации электроустановок» и «Нормативными материалами по охране труда для разработки проектов организации строительства энергетических объектов».

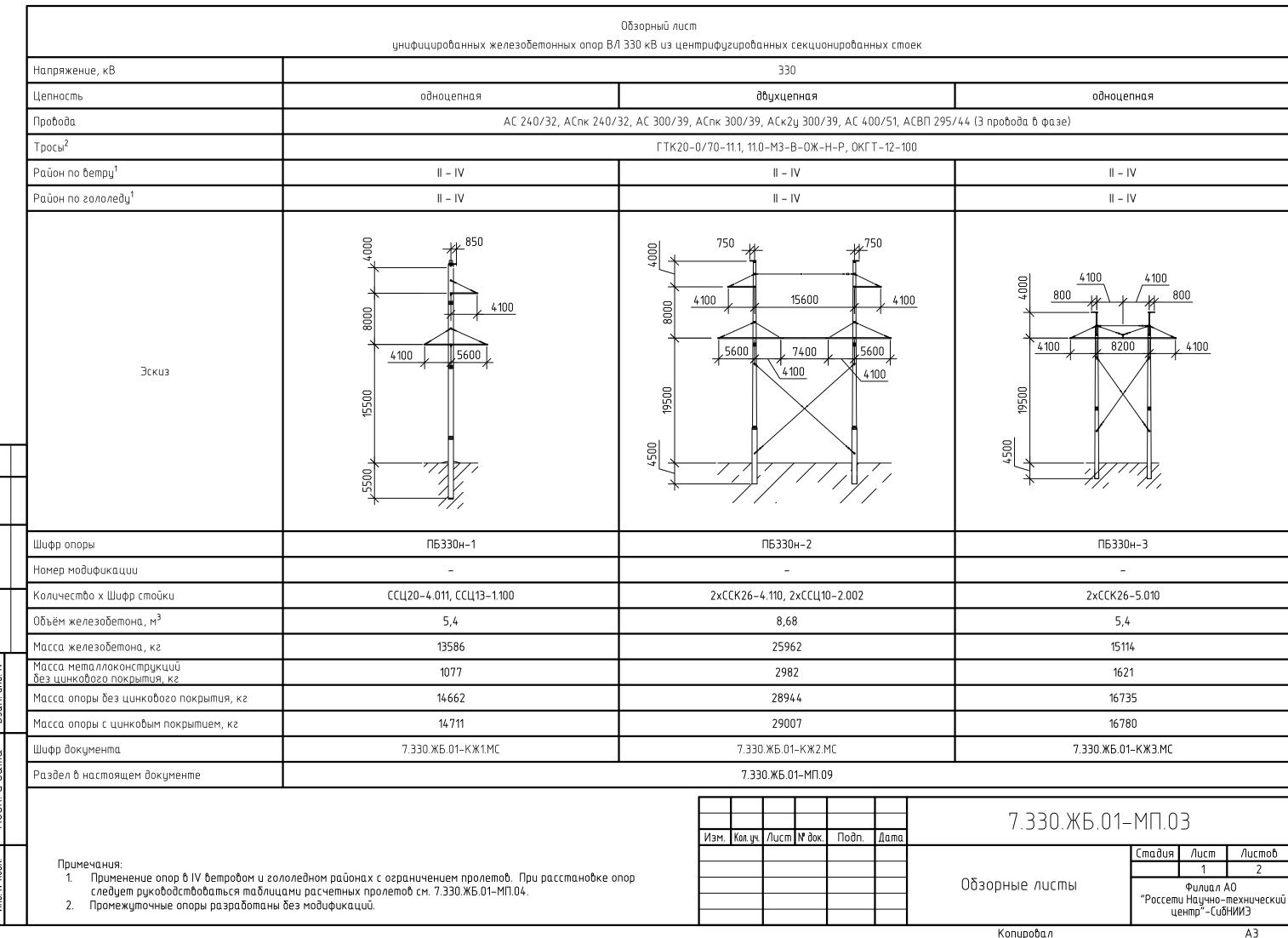
Глава 4. Защита от коррозии

Защита от коррозии стальных конструкций опор и стальных элементов железобетонных изделий, находящихся в непосредственном контакте с окружающей средой, должна производиться согласно требованиям Приказа Минэнерго России от 31.08.2022 №884 «Об утверждении Методических указаний по технологическому проектированию линий электропередачи классом напряжения 35-750 кВ» и выполняться в соответствии с СП 28.13330.2017 и ГОСТ 9.307-2021.

Для защиты от коррозии стальных элементов опор ВЛ применяются:

- горячее цинкование толщиной 60-100 мкм в условиях слабоагрессивной среды;
- горячее цинкование толщиной 60-100 мкм с дополнительным лакокрасочным покрытием группы II и III по СП 28.13330.2017 в условиях среднеагрессивной среды.

Защита металлических конструкций опор от коррозии в условиях сильноагрессивной среды выполняется в соответствии с требованиями СП 28.13330.2017.


С учетом габаритов ванн для цинкования максимальная длина сварных и отдельных элементов не должна превышать 12 м.

Крепежные изделия (болты, шпильки, гайки, круглые шайбы) должны быть защищены от коррозии горячим цинкованием при толщине покрытия не менее 42 мкм с условием обеспечения свинчиваемости резьбового соединения. Допускается применение термодиффузионного цинкования при толщине покрытия не менее 21 мкм при условии выполнения в заводских условиях дополнительной обработки, исключающей появление бурого налета.

Для пружинных шайб антикоррозионную защиту выполнить гальваническим цинкованием толщиной покрытия не менее 12 мкм.

После приварки элементов заземления, а также в местах повреждения цинкового покрытия, необходимо выполнить восстановление покрытия при помощи холодного цинкования. Поврежденные места восстановить нанесением двух слоев по 40 мкм цинконаполненной грунтовки ЦИНОЛ и двух слоев по 30 мкм композиции АЛПОЛ либо аналогами. Общая толщина покрытия 140 мкм.

Изм.	Кол. цч.	/lucm	№ док.	Подп.	Дата

Согласовано

Обзорный лист унифицированных железобетонных опор ВЛ 330 кВ из центрифугированных секционированных стоек 330 Напряжение, кВ Цепность одноцепная AC 240/32, ACnκ 240/32, AC 300/39, ACnκ 300/39, ACκ2y 300/39, AC 400/51, ACBΠ 295/44 (3 προδοσα δ φαзе) Провода Тросы² ΓΤΚ20-0/70-11.1, 11.0-M3-B-0Ж-H-P, 0ΚΓΤ-12-100 Район по ветру¹ II – IV Район по гололеду¹ II – IV 1500 Эскиз 14500 20000 1000 1000 8000 1000 1000

Шифр опоры		У Б330	н–1	
Номер модификации ²	1	2	1к	2к
Максимальный угол поворота ВЛ, град.	15	45	15	45
Количество х Шифр стойки	3хССЦ20-5.010	3хССЦ20-5.010	3хССЦ20-5.010	3хССЦ20-5.010
Объём железобетона, м ³	10,02	10,02	10,02	10,02
Масса железобетона, кг	30328	30328	30328	30328
Масса металлоконструкций без цинкового покрытия, кг	958	1789	1419	2274
Масса опоры без цинкового покрытия, кг	31286	32116	31747	32602
Масса опоры с цинковым покрытием, кг	31336	32180	31822	32691
Шифр документа		7.330.ЖБ.01-	-КЖ4.MC	

Примечания:

Раздел в настоящем документе

- 1. Применение опор в IV ветровом и гололедном районах с ограничением пролетов. При расстановке опор следует руководствоваться таблицами расчетных пролетов см. 7.330.ЖБ.01-МП.04.
- 2. Анкерно-угловые опоры разработаны с модификациями:
 - 1, 1к без применения оттяжек;
 - 2, 2к с применением оттяжек.

Изм.	Кол. уч.	Nucm	№ док.	Подп.	Дата

7.330.ЖБ.01-МП.09

7.330.ЖБ.01-МП.03

/lucm

		Расчетные пролеты для опор (по параметрам проводов)											ПБ330н-1										
		ਜੁੰ ਵਿ	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ACĸ2y 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ACĸ2y 300/39	AC 400/51	АСВП 295/44
	100	Марка провода Провод Прово	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86
	6	R = TK20-0/70-11.1mm-36κΑ2c-91κΗ σmax [κεc/mm²]	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-
	1 1 1	OKFT-12-100 omax [ksc/mm²]	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-
	۵	전요 Район по ветру (нормативное давление, Па)			•	II (500)						III (650)						'		IV (800)		'	
		Габаритные пролеты	265	305	265	295	295	265	285	265	305	265	295	295	265	285	260	305	265	295	295	265	285
	- ((10) Ветровые пролеты	350	370	330	350	350	305	350	310	315	280	310	310	245	310	225	230	210	225	225	190	225
		Весовые пролеты	460	475	375	380	380	285	350	460	475	375	380	380	285	350	450	460	375	380	380	285	350
		Габаритные пролеты	235	275	245	285	280	260	280	235	275	245	285	280	260	280	230	270	240	280	275	255	275
	((15) Ветровые пролеты	280	295	270	280	280	250	280	280	295	270	280	280	245	280	225	235	215	225	225	190	225
		Весовые пролеты	460	475	375	380	380	285	350	460	475	375	380	380	285	350	445	470	375	380	380	285	350
		Гαδαритные пролеты	195	225	210	235	230	225	235	195	225	210	235	230	225	235	195	220	205	235	230	220	230
	(2	III (20) Ветровые пролеты	230	240	220	235	235	210	235	230	240	220	235	235	210	235	185	195	175	185	185	170	185
		Весовые пролеты	325	340	300	315	315	265	310	325	340	300	315	315	265	310	325	340	300	315	315	265	310
		Гαδαритные пролеты	175	200	185	210	205	200	205	175	200	185	210	205	200	205	170	195	180	205	205	200	205
		IV (25) Ветровые пролеты	195	205	190	200	200	180	200	195	205	190	200	200	180	200	155	165	150	160	160	145	160
		Весовые пролеты	245	255	225	235	235	205	235	245	255	225	235	235	205	235	245	255	225	235	235	205	235
	(no	Расчетные пролеты для опор о параметрам проводов и троса ТК20–0/70–11.1мм–36кА2c–91кН)											ПБ330н-1										
		ਜੁੰ ਵਿੱ	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ACĸ2y 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44
		Mapka npoboda Time	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86
	0 2 0	N = TK20-0/70-11.1mm-36κΑ2c-91κΗ σmαx [κεc/mm²]	32,5	41,64	35,34	42,57	41,4	38,8	41,64	32,5	41,64	35,34	42,57	41,4	38,8	41,64	32,86	42,08	35,83	43,14	41,96	39,45	42,25
	ָהַ <u>י</u>	OKΓΤ-12-100 σmax [κεε/мм²]	-	_	-	_	_	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-
	۵	진을 Район по ветру (нормативное давление, Па)			•	II (500)						III (650)					IV (800)						
		Гαδαритные пролеты	265	305	265	295	295	265	285	265	305 265 295 295 265				285	255 305 265 295 295 265 26				285			
	(-	 (10) Ветровые пролеты	350	370	330	350	350	305	350	300	300	280	300	300	245	300	225	230	210	225	225	185	225
		Весовые пролеты	375	375	375	375	375	285	350	375	375	375	375	375	285	350	375	375	375	375	375	285	350
		Γαδαритные пролеты	235	275	245	285	280	260	280	235	275	245	285	280	260	280	230	270	240	280	275	255	275
	((15) Ветровые пролеты	280	295	270	280	280	250	280	280	295	270	280	280	245	280	225	230	215	225	225	185	225
		Весовые пролеты	375	375	375	375	375	285	350	375	375	375	375	375	285	350	375	375	375	375	375	285	350
		Гαδαритные пролеты	195	225	210	235	230	225	235	195	225	210	235	230	225	235	195	220	205	230	230	220	230
2	(2	 (20) Ветровые пролеты	230	240	220	235	235	210	235	230	240	220	235	235	210	235	185	195	175	185	185	170	185
Взам. инв.		Весовые пролеты	295	295	295	295	295	265	295	295	295	295	295	295	265	295	295	295	295	295	295	265	295
30.M.		Гαδαритные пролеты	175	200	185	210	205	200	205	175	200	185	210	205	200	205	170	195	180	205	205	195	205
B	(2	IV (25) Ветровые пролеты	195	200	190	200	200	180	200	195	200	190	200	200	180	200	155	165	150	160	160	145	160
	\vdash	Весовые пролеты	210	210	210	210	210	205	210	210	210	210	210	210	205	210	210	210	210	210	210	205	210
Подп. и дата																							
n g																							
																		7 7 7 7	\	24 11			
1.01		Расчетные пролеты приведены для опоры ПБ330н-	1. Пролеты соответствуют максимальным нагрузкам расчетных						счетных			-			1		ľ	7.330	.ЖЬ.(J1-M	1.04		
]0[POWINGS (cm p 2 E Summy Rammy 7 220 ME 04 ME 02)	режимов (см. п. 3.5 общих данных 7.330.ЖБ.01-МП.02). Значения пролетов указаны в метрах. 1. Габаритные пролеты, указанные в таблице приведены для районов с умеренной пляской проводов.								Изм. Кол. уч. Лист № док. Подп. Дата				Дата	1							
	4	1. Габаритные пролеты, указанные в таблице	приведені	ы для рай	лонов с ум	леренно й	пляской	проводов.							+					ر <u>-</u>	a dua La	lucm I /	lucmoß.
H		 Габаритные пролеты, указанные в таблице В случаях оговоренных в пп. 3.8.5–3.8.7, 3.1 	приведені	ы для рай	лонов с ум	леренно й	пляской	проводов. е пролеті	ы должны	ы быть										Cm	лдия /	lucm /	Пистов 8
H	-	 Габаритные пролеты, указанные в таблице В случаях оговоренных в пп. 3.8.5-3.8.7, 3.1 уточнены. 	приведені 1 общих с	ы для рай Занных 7	ло воно <mark>с</mark> 10.330.ЖБ.0	1еренной 1–МП.02 г	пляской і осчетны	е пролет	ы должны	ы бышь						Pa	ісчетні	ые прол	леты		φι	1 Јлиал АО	8
Инв. № подл. Пос		 Габаритные пролеты, указанные в таблице В случаях оговоренных в пп. 3.8.5–3.8.7, 3.1 	приведені 1 общих б сов приняі	ы для рай Занных 7 ты следу	онов с ум 1.330.ЖБ.О	1еренной 1–МП.02 г	пляской і осчетны	е пролет	ы должны	ы деше						Pa	счетн	ые прол	леты		Φι occemu Ho	1	8 нический

Согласовано

	Расчетные пролеты для опор (по параметрам проводов и троса ОКГТ-12-100)											ПБ330н-1										
гололеду пщ. ст., мм)	Марка провода	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	АСк2у 300/39	AC 400/51	АСВП 295/44
. СШ.,	Провод отах [кгс/мм²]	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86
70 20 MO/JŲ	TK20-0/70-11.1mm-36kA2c-91kH	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Район (норм. п	ΟΚΓΤ-12-100 σmax [κεc/мм²]	30,98	39,98	33,75	40,86	39,7	37,12	39,93	30,98	39,98	33,75	40,86	39,7	37,12	39,93	31,27	40,33	34,15	41,33	40,17	37,69	40,44
A E	Район по ветру (нормативное давление, Па)				II (500)							III (650)							IV (800)			
	Габаритные пролеты	265	305	265	295	295	265	285	265	305	265	295	295	265	285	255	305	265	295	295	265	285
l (10)	Ветровые пролеты	350	365	330	350	350	305	350	280	280	280	280	280	245	280	225	225	210	225	225	185	225
	Весовые пролеты	330	330	330	330	330	285	330	330	330	330	330	330	285	330	330	330	330	330	330	285	330
	Габаритные пролеты	235	275	245	285	280	260	280	235	275	245	285	280	260	280	230	270	240	280	275	255	275
II (15)	Ветровые пролеты	280	295	270	280	280	250	280	275	275	270	280	280	245	280	225	225	215	225	225	185	225
,	Весовые пролеты	330	330	330	330	330	285	330	330	330	330	330	330	285	330	330	330	330	330	330	285	330
	Габаритные пролеты	195	225	210	235	230	225	235	195	225	210	235	230	225	235	195	220	205	230	230	220	230
III (20)	Ветровые пролеты	230	240	220	235	235	210	235	230	240	220	235	235	210	235	185	195	175	185	185	170	185
,,	Весовые пролеты	280	280	280	280	280	265	280	280	280	280	280	280	265	280	280	280	280	280	280	265	280
	Габаритные пролеты	175	200	185	210	205	200	205	175	200	185	210	205	200	205	170	195	180	205	205	195	205
IV (25)	Ветровые пролеты	195	200	190	200	200	180	200	195	200	190	200	200	180	200	155	165	150	160	160	145	160
,	Весовые пролеты	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205	205

	Расчетные пролеты для опор (по параметрам проводов)											ПБ330н-2										
лоледу ст., мм)	Марка провода	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	АСк2у 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	ACnk 300/39	АСк2у 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	ACnk 300/39	АСк2у 300/39	AC 400/51	АСВП 295/44
CM.	Προδοσ σπαχ [κες/мм²]	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86
по 20, moлщ.	TK20-0/70-11.1mm-36ĸA2c-91ĸH σmax [kzc/mm²]	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Район (норм. п	OKFT-12-100 omax [kzc/mm²]	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P P E	Район по ветру (нормативное давление, Па)				II (500)							III (650)							IV (800)			
	Габаритные пролеты	355	420	365	410	410	375	400	355	420	365	410	410	375	400	345	410	355	410	405	370	400
(10)	Ветровые пролеты	485	510	455	480	485	425	485	430	440	395	425	430	350	430	305	315	280	305	310	250	310
	Весовые пролеты	705	725	575	585	585	435	540	705	725	575	585	585	435	540	615	630	560	585	585	435	540
	Габаритные пролеты	315	365	330	375	370	345	370	315	365	330	375	370	345	370	305	355	320	370	365	340	365
 (15)	Ветровые пролеты	390	405	370	390	390	350	390	390	395	350	390	390	310	390	310	325	295	310	310	280	310
	Весовые пролеты	630	725	575	585	585	435	540	630	725	575	585	585	435	540	610	650	575	585	585	435	540
	Габаритные пролеты	260	300	275	310	310	295	310	260	300	275	310	310	295	310	255	295	270	310	305	290	305
III (20)	Ветровые пролеты	325	340	315	325	325	295	325	325	340	315	325	325	295	325	260	270	250	260	260	235	260
	Весовые пролеты	455	480	420	440	440	370	435	455	480	420	440	440	370	435	455	480	420	440	440	370	435
	Габаритные пролеты	230	265	245	275	275	265	275	230	265	245	275	275	265	275	225	260	240	275	270	260	270
IV (25)	Ветровые пролеты	275	290	270	280	280	260	280	275	290	270	280	280	260	280	220	230	215	225	225	205	225
	Весовые пролеты	340	355	315	330	330	285	330	340	355	315	330	330	285	330	340	355	315	330	330	285	330

- 1. Расчетные пролеты приведены для опор ПБ330н-1 и ПБ330н-2. Пролеты соответствуют максимальным нагрузкам расчетных режимов (см. п. 3.5 общих данных 7.330.ЖБ.01-МП.02). Значения пролетов указаны в метрах.
- 2. Габаритные пролеты, указанные в таблице приведены для районов с умеренной пляской проводов.
- 3. В случаях оговоренных в nn. 3.8.5-3.8.7, 3.11 общих данных 7.330.ЖБ.01-МП.02 расчетные пролеты должны быть иточнены.
- 4. Для механического расчета проводов и тросов приняты следующие температуры воздуха: Tmax=+40°C, Tmin=-40°C, Тэкс=0°C, Тгол=-5°C, Твет=-5°C, Тгр=+15°C.

Изм.	Кол. уч.	/lucm	№ док.	Подп.	Дата

Лист 2

то пара	Расчетные пролеты для опор метрам проводов и троса ТК20-0/70-11.1мм-36кА2c-91кН)											ПБ330н-2										
гололеду пщ. ст., мм)	Марка провода	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ACĸ2y 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ACĸ2y 300/39	AC 400/51	АСВП 295/4
. CM.	Προδοd σπαχ [κες/мм²]	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86
70 20 MO/UU	TK20-0/70-11.1mm-36κΑ2c-91κΗ σπαχ [κεc/mm²]	34,31	46,7	38,35	48,24	46,57	42,71	46,95	34,31	46,7	38,35	48,24	46,57	42,71	46,95	34,66	46,82	38,59	48,1	46,42	43,11	46,85
Район (норм. п	OKΓT-12-100 σmαx [κεc/мм²]	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P E	Район по ветру (нормативное давление, Па)				II (500)							III (650)							IV (800)			
	Габаритные пролеты	355	420	365	410	410	375	400	355	420	365	410	410	375	400	345	410	355	410	405	370	400
l (10)	Ветровые пролеты	485	500	455	480	485	425	485	420	415	395	415	415	345	415	305	310	280	305	310	250	310
	Весовые пролеты	540	540	540	540	540	435	540	540	540	540	540	540	435	540	540	540	540	540	540	435	540
	Габаритные пролеты	315	365	330	375	370	345	370	315	365	330	375	370	345	370	305	355	320	370	365	340	365
II (15)	Ветровые пролеты	390	380	370	385	390	350	390	385	380	350	385	390	310	390	310	325	295	310	310	280	310
	Весовые пролеты	540	540	540	540	540	435	540	540	540	540	540	540	435	540	540	540	540	540	540	435	540
	Габаритные пролеты	260	300	275	310	310	295	310	260	300	275	310	310	295	310	255	295	270	310	305	290	305
III (20)	Ветровые пролеты	320	305	315	310	310	295	310	320	305	315	310	310	295	310	260	270	250	260	260	235	260
	Весовые пролеты	405	370	405	380	385	370	385	405	370	405	380	385	370	385	410	370	405	385	390	370	390
	Габаритные пролеты	230	265	245	275	275	265	275	230	265	245	275	275	265	275	225	260	240	275	270	260	270
IV (25)	Ветровые пролеты	275	255	265	255	260	260	260	275	255	265	255	260	260	260	220	225	215	225	225	205	225
.==,	Весовые пролеты	290	265	285	270	275	285	275	290	265	285	270	275	285	275	290	265	285	275	280	285	280

	Расчетные пролеты для опор (по параметрам проводов и троса ОКГТ-12-100)											ПБ330н-2										
лоледу ст., мм)	Марка провода	AC 240/32	ACnk 240/32	AC 300/39	АСпк 300/39	АСк2у 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	ACnk 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	ACnk 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44
. CM.,	Προδοσ σπαχ [κες/мм²]	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86
ПО 20, ПОЛЩ.	TK20-0/70-11.1mm-36kA2c-91kH	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-
Район (норм. п	OKFT-12-100	32,22	44,07	36,07	45,55	43,94	40,25	44,31	32,22	44,07	36,07	45,55	43,94	40,25	44,31	32,5	44,12	36,25	45,36	43,76	40,58	44,17
P. E.	Район по ветру (нормативное давление, Па)				II (500)							III (650)							IV (800)			
	Габаритные пролеты	355	420	365	410	410	375	400	355	420	365	410	410	375	400	345	410	355	410	405	370	400
(10)	Ветровые пролеты	485	490	455	480	485	425	485	390	385	385	385	385	345	385	305	315	280	305	305	245	305
	Весовые пролеты	475	475	475	475	475	435	475	475	475	475	475	475	435	475	475	475	475	475	475	435	475
	Габаритные пролеты	315	365	330	375	370	345	370	315	365	330	375	370	345	370	305	355	320	370	365	340	365
 (15)	Ветровые пролеты	390	375	370	380	385	350	385	390	375	350	380	385	310	385	310	315	295	310	310	280	310
	Весовые пролеты	475	475	475	475	475	435	475	475	475	475	475	475	435	475	475	475	475	475	475	435	475
	Габаритные пролеты	260	300	275	310	310	295	310	260	300	275	310	310	295	310	255	295	270	310	305	290	305
III (20)	Ветровые пролеты	315	300	315	305	310	295	310	315	300	315	305	310	295	310	260	265	250	260	260	235	260
	Весовые пролеты	390	360	390	370	375	370	375	390	360	390	370	375	370	375	400	360	390	375	380	370	380
	Габаритные пролеты	230	265	245	275	275	265	275	230	265	245	275	275	265	275	225	260	240	275	270	260	270
IV (25)	Ветровые пролеты	270	255	265	255	260	260	260	270	255	265	255	260	260	260	220	225	215	225	225	205	225
	Весовые пролеты	285	265	280	265	270	280	270	285	265	280	265	270	280	270	285	265	280	270	275	280	275

- 1. Расчетные пролеты приведены для опоры ПБ330н-2. Пролеты соответствуют максимальным нагрузкам расчетных режимов (см. п. 3.5 общих данных 7.330.ЖБ.01-МП.02). Значения пролетов указаны в метрах.
- 2. Габаритные пролеты, указанные в таблице приведены для районов с умеренной пляской проводов.
- 3. В случаях оговоренных в nn. 3.8.5—3.8.7, 3.11 общих данных 7.330.ЖБ.01—МП.02 расчетные пролеты должны быть иточнены
- 4. Для механического расчета проводов и тросов приняты следующие температуры воздуха: Tmax=+40°C, Tmin=-40°C, Тэкс=0°C, Тгол=-5°C, Твет=-5°C, Тгр=+15°C.

Изм.	Кол. уч.	/lucm	№ док.	Подп.	Дата

/lucm

	Расчетные пролеты для опор (по параметрам проводов)											ПБ330н-3										
лоледу ст., мм)	Марка провода	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44
. CM.,	Προδοσ σπαχ [κες/мм²]	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86
по 20, Мо/Щ.	TK20-0/70-11.1mm-36kA2c-91kH	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-
Район (норм. п	OKΓT-12-100 σmax [κες/мм²]	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-
모	Район по ветру (нормативное давление, Па)				II (500)							III (650)							IV (800)			
	Габаритные пролеты	355	420	365	410	410	375	400	355	420	365	410	410	375	400	345	410	355	410	405	370	400
(10)	Ветровые пролеты	485	510	455	480	485	425	485	430	430	395	430	430	355	430	305	315	280	305	310	250	310
	Весовые пролеты	710	840	725	735	735	550	680	710	840	725	735	735	550	680	615	630	565	610	620	500	620
	Габаритные пролеты	315	365	330	375	370	345	370	315	365	330	375	370	345	370	305	355	320	370	365	340	365
II (15)	Ветровые пролеты	390	405	370	390	390	350	390	390	395	350	390	390	320	390	310	325	295	310	310	280	310
	Весовые пролеты	630	730	660	735	735	550	680	630	730	660	735	735	550	680	610	650	595	620	625	550	625
	Габаритные пролеты	260	300	275	310	310	295	310	260	300	275	310	310	295	310	255	295	270	310	305	290	305
III (20)	Ветровые пролеты	325	340	315	325	325	295	325	325	340	315	325	325	295	325	260	270	250	260	260	235	260
	Весовые пролеты	485	510	445	470	470	400	465	485	510	445	470	470	400	465	485	510	445	470	470	400	465
	Габаритные пролеты	230	265	245	275	275	265	275	230	265	245	275	275	265	275	225	260	240	275	270	260	270
IV (25)	Ветровые пролеты	275	290	270	280	280	260	280	275	290	270	280	280	260	280	220	230	215	225	225	205	225
	Весовые пролеты	365	380	340	355	355	305	350	365	380	340	355	355	305	350	365	380	340	355	355	305	350
		-							-							-		-	-			
	Расчетные пролеты для опор																					

(no napa	Расчетные пролеты для опор метрам проводов и троса ТК20-0/70-11.1мм-36кА2с-91кН)											ПБ330н-3										
edy , MM)	Марка провода	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44
₽ 5 5	Προδοδ σπαχ [κες/мм²]	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86
по 20, то/щ.	TK20-0/70-11.1mm-36kA2c-91kH	32,73	42,52	36,05	44,33	43,13	40,23	43,49	32,73	42,52	36,05	44,33	43,13	40,23	43,49	33,17	42,91	36,63	44,63	43,42	41	43,83
Район (норм. г	OKΓT-12-100 σmax [κεc/мм²]	-	-	-	-	1	-	1	1	-	-	-	-	-	-	-	1	-	1	-	-	1
9 E	Район по ветру (нормативное давление, Па)				II (500)							III (650)							IV (800)			
	Габаритные пролеты	355	420	365	410	410	375	400	355	420	365	410	410	375	400	345	410	355	410	405	370	400
(10)	Ветровые пролеты	485	510	455	480	485	425	485	425	410	395	415	415	350	415	305	315	280	305	310	250	310
	Весовые пролеты	680	680	680	680	680	550	680	680	680	680	680	680	550	680	610	630	565	610	615	500	615
	Габаритные пролеты	315	365	330	375	370	345	370	315	365	330	375	370	345	370	305	355	320	370	365	340	365
II (15)	Ветровые пролеты	390	385	370	385	385	350	385	390	385	350	385	385	320	385	310	325	295	310	310	280	310
	Весовые пролеты	630	680	660	680	680	550	680	630	680	660	680	680	550	680	610	650	595	620	625	550	625
	Габаритные пролеты	260	300	275	310	310	295	310	260	300	275	310	310	295	310	255	295	270	310	305	290	305
III (20)	Ветровые пролеты	325	310	315	310	310	295	310	325	310	315	310	310	295	310	260	260	250	260	260	235	260
	Весовые пролеты	425	425	425	425	425	400	425	425	425	425	425	425	400	425	425	425	425	425	425	400	425
	Габаритные пролеты	230	265	245	275	275	265	275	230	265	245	275	275	265	275	225	260	240	275	270	260	270
IV (25)	Ветровые пролеты	270	260	270	260	260	260	260	270	260	270	260	260	260	260	220	220	215	225	225	205	225
	Весовые пролеты	305	305	305	305	305	305	305	305	305	305	305	305	305	305	305	305	305	305	305	305	305

- 1. Расчетные пролеты приведены для опоры ПБ330н-3. Пролеты соответствуют максимальным нагрузкам расчетных режимов (см. п. 3.5 общих данных 7.330.ЖБ.01-МП.02). Значения пролетов указаны в метрах.
- 2. Габаритные пролеты, указанные в таблице приведены для районов с умеренной пляской проводов.
- 3. В случаях оговоренных в nn. 3.8.5—3.8.7, 3.11 общих данных 7.330.ЖБ.01—МП.02 расчетные пролеты должны быть иточнены.
- 4. Для механического расчета проводов и тросов приняты следующие температуры воздуха: Tmax=+40°C, Tmin=-40°C, Тэкс=0°C, Тгол=-5°C, Твет=-5°C, Тгр=+15°C.

ſ	Изм.	Кол. уч.	/lucm	№ док.	Подп.	Дата

/lucm 4

	Расчетные пролеты для опор (по параметрам проводов и троса ОКГТ–12–100)											ПБ330н-3										
лоледу ст., мм)	Марка провода	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	ACnk 300/39	ACk2y 300/39	AC 400/51	АСВП 295/44
. CM.,	Προδο ਰ σπαχ [κες/мм²]	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86
∩0 20, N0∧Щ.	TK20-0/70-11.1mm-36kA2c-91kH	-	-	ı	1	1	-	ı	ı	-	ı	-	ı	-	ı	ı	ı	-	_	-	-	-
Район (норм. г	OKFT-12-100	31,1	40,59	34,31	42,34	41,17	38,36	41,52	31,1	40,59	34,31	42,34	41,17	38,36	41,52	31,46	40,89	34,8	42,56	41,38	39,02	41,77
9 E	Район по ветру (нормативное давление, Па)				II (500)							III (650)							IV (800)			
	Габаритные пролеты	355	420	365	410	410	375	400	355	420	365	410	410	375	400	345	410	355	410	405	370	400
l (10)	Ветровые пролеты	485	490	455	480	485	425	485	395	380	395	385	385	355	385	305	310	280	305	310	250	310
	Весовые пролеты	595	595	595	595	595	550	595	595	595	595	595	595	550	595	595	595	560	595	595	500	595
	Гαδαритные пролеты	315	365	330	375	370	345	370	315	365	330	375	370	345	370	305	355	320	370	365	340	365
11 (15)	Ветровые пролеты	390	380	370	380	380	350	380	390	380	350	380	380	320	380	310	315	295	310	310	280	310
	Весовые пролеты	595	595	595	595	595	550	595	595	595	595	595	595	550	595	595	595	595	595	595	550	595
	Габаритные пролеты	260	300	275	310	310	295	310	260	300	275	310	310	295	310	255	295	270	310	305	290	305
III (20)	Ветровые пролеты	325	305	315	305	305	295	305	325	305	315	305	305	295	305	260	255	250	260	260	235	260
	Весовые пролеты	410	410	410	410	410	400	410	410	410	410	410	410	400	410	410	410	410	410	410	400	410
_	Габаритные пролеты	230	265	245	275	275	265	275	230	265	245	275	275	265	275	225	260	240	275	270	260	270
IV (25)	Ветровые пролеты	270	255	270	255	255	260	255	270	255	270	255	255	260	255	220	215	215	220	220	205	220
	Весовые пролеты	295	295	295	295	295	295	295	295	295	295	295	295	295	295	295	295	295	295	295	295	295

						Γ
Изм.	Кол. уч.	/lucm	№ док.	Подп.	Дата	l

/lucm

^{1.} Расчетные пролеты приведены для опоры ПБ330н-3. Пролеты соответствуют максимальным нагрузкам расчетных режимов (см. п. 3.5 общих данных 7.330.ЖБ.01-МП.02). Значения пролетов указаны в метрах.

^{2.} Габаритные пролеты, указанные в таблице приведены для районов с умеренной пляской проводов.

^{3.} В случаях оговоренных в nn. 3.8.5—3.8.7, 3.11 общих данных 7.330.ЖБ.01—МП.02 расчетные пролеты должны быть иточнены.

^{4.} Для механического расчета проводов и тросов приняты следующие температуры воздуха: Tmax=+40°C, Tmin=-40°C, Тэкс=0°C, Тгол=-5°C, Твет=-5°C, Тгр=+15°C.

	(по параг	Расчетные пролеты для опор метрам проводов и троса ОКГТ-12-100)										УБ330 н	ı–1.1 u YБ33	0н-1.1к									
ВЛ,	edy MM)	Марка провода	AC 240/32	АСпк 240/32	AC 300/39	ACnk 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	ACnk 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44
БE	гололес Іщ. ст., г	Προδοδ σπαx [κεc/мм²]	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86
оворог град.	по 20	TK20-0/70-11.1mm-36kA2c-91kH	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
20 <i>Л</i> П(Район (норм. п	OKΓT-12-100 σmαx [κετ/мм²]	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A2	Pc (HC	Район по ветру (нормативное давление, Па)				II (500)							III (650)							IV (800)			
		Габаритные пролеты	370	390	380	390	390	385	390	370	370	370	370	370	360	370	345	345	345	345	350	335	345
	(10)	Ветровые пролеты	515	545	525	535	535	385	495	515	515	515	420	430	360	415	480	425	395	395	395	335	385
		Весовые пролеты	325	330	265	265	265	200	245	325	330	265	265	265	200	245	325	330	265	265	265	200	245
		Габаритные пролеты	325	365	340	370	370	360	370	325	360	340	370	370	360	370	320	345	335	345	350	345	345
	 (15)	Ветровые пролеты	455	510	475	515	515	360	495	455	505	475	515	515	360	495	445	480	470	420	480	335	435
0-15		Весовые пролеты	325	330	265	265	265	200	245	325	330	265	265	265	200	245	325	330	265	265	265	200	245
U- 15		Габаритные пролеты	270	300	290	310	310	310	310	270	300	290	310	310	310	310	265	290	285	295	300	300	300
	III (20)	Ветровые пролеты	375	420	405	435	435	305	435	375	420	405	435	435	305	435	370	405	400	380	420	300	375
		Весовые пролеты	325	330	265	265	265	200	245	325	330	265	265	265	200	245	325	330	265	265	265	200	245
	_	Гαδαритные пролеты	240	265	255	270	275	275	275	240	265	255	270	275	275	275	235	255	250	260	260	265	265
	IV (25)	Ветровые пролеты	335	370	355	375	385	275	385	335	370	355	375	385	275	385	330	355	350	325	365	265	325
		Весовые пролеты	275	290	260	265	265	200	245	275	290	260	265	265	200	245	275	290	260	265	265	200	245

	(no napa	Расчетные пролеты для опор иметрам проводов и троса ОКГТ-12-100)										УБ330 н	–1.2 u YБ33	Юн-1.2к									
ВЛ,	по гололеду толщ. ст., мм)	Марка провода	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	АСк2у 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	ACnk 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44
Ē	. СШ.,	Προδο d σmax [κεc/мм²]	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86
оворо! град.	NO 20	TK20-0/70-11.1mm-36kA2c-91kH	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Район (норм. п	OKΓT-12-100 σmax [κες/мм²]	-	-	-	-	-	-	-	-	ı	-	1	-	-	ı	-	-	-	-	-	-	-
yzo,)Н)	Район по ветру (нормативное давление, Па)				II (500)							III (650)							IV (800)			
		Габаритные пролеты	370	385	380	385	385	385	385	365	365	365	365	365	360	365	345	345	345	345	350	335	345
	(10)	Ветровые пролеты	515	540	525	535	535	385	495	510	510	510	425	425	360	415	480	430	430	395	400	335	390
		Весовые пролеты	325	330	265	265	265	200	245	325	330	265	265	265	200	245	325	330	265	265	265	200	245
		Габаритные пролеты	325	360	340	370	370	360	370	325	360	340	365	365	360	365	320	340	335	345	350	345	345
	11 (15)	Ветровые пролеты	455	505	475	515	515	360	495	455	505	475	510	510	360	495	445	475	470	455	490	340	470
15-45		Весовые пролеты	325	330	265	265	265	200	245	325	330	265	265	265	200	245	325	330	265	265	265	200	245
15-45		Габаритные пролеты	270	300	290	310	310	310	310	270	300	290	310	310	310	310	265	295	285	300	300	300	300
	III (20)	Ветровые пролеты	375	420	405	435	435	310	435	375	420	405	435	435	310	435	370	410	400	420	420	305	420
		Весовые пролеты	325	330	265	265	265	200	245	325	330	265	265	265	200	245	325	330	265	265	265	200	245
		Габаритные пролеты	240	265	255	270	275	275	275	240	265	255	270	275	275	275	235	260	250	260	265	265	265
	IV (25)	Ветровые пролеты	335	370	355	375	385	275	385	335	370	355	375	385	275	385	330	365	350	365	370	270	370
		Весовые пролеты	275	290	260	265	265	200	245	275	290	260	265	265	200	245	275	290	260	265	265	200	245

- 1. Расчетные пролеты приведены для опор УБ330н-3.1, УБ330н-3.1к, УБ330н-3.2 и УБ330н-3.2к. Пролеты соответствуют максимальным нагрузкам расчетных режимов (см. п. 3.5 общих данных 7.330.ЖБ.01-МП.02). Значения пролетов указаны в метрах.
- 2. Расчетные пролеты для опоры, приведенные в таблице, равны сумме равных смежных пролетов. Максимальное значение одного из смежных пролетов следует принимать не более половины от указанных.
- 3. В случаях оговоренных в п. 3.11 общих данных 7.330.ЖБ.01-МП.02 расчетные пролеты должны быть уточнены.
- 4. Для механического расчета проводов и тросов приняты следующие температуры воздуха: $Tmax=+40^{\circ}C$, $Tmin=-40^{\circ}C$, $Tskc=0^{\circ}C$, $Tson=-5^{\circ}C$, $Tbem=-5^{\circ}C$, $Tsp=+15^{\circ}C$.

Изм.	Кол. уч.	/lucm	№ док.	Подп.	Дата	

/lucm

Konupoba*n* A3

(no napa	метрам п	Расчетные пролеты для опор роводов и троса ТК20–0/70–11.1мм–36кА2c–91кН)										ЧБ330 н	ı–1.1 u YБ33	0н-1.1к									
B/I,	гололеду 1щ. ст., мм)	Марка провода	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ACκ2y 300/39	AC 400/51	АСВП 295/44
Ę	. CM.	Προβοδ σπαχ [κες/мм²]	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86
оворог град.	DO 20	TK20-0/70-11.1mm-36kA2c-91kH	37,67	48,2	42,25	47,42	46,06	44,08	46,5	37,77	48,2	42,25	47,42	46,06	44,08	46,5	37,85	47,24	42,37	47,72	46,35	44,08	46,84
Yzon n	Район (норм. п	OKΓT-12-100 σmαx [κεc/мм²]	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
275	PC ED	Район по ветру (нормативное давление, Па)				II (500)							III (650)							IV (800)			
		Габаритные пролеты	370	390	380	390	390	385	390	370	370	370	370	370	360	370	345	345	345	345	350	335	345
	(10)	Ветровые пролеты	505	405	505	405	410	385	410	505	385	440	385	390	360	385	410	365	365	365	365	335	355
		Весовые пролеты	250	250	250	250	250	200	245	250	250	250	250	250	200	245	250	250	250	250	250	200	245
		Габаритные пролеты	325	365	340	370	370	360	370	325	360	340	370	370	360	370	320	345	335	345	350	345	345
	 (15)	Ветровые пролеты	455	370	475	385	385	360	395	455	370	475	385	380	360	385	445	355	470	365	365	335	375
0-15		Весовые пролеты	250	250	250	250	250	200	245	250	250	250	250	250	200	245	250	250	250	250	250	200	245
0-15		Габаритные пролеты	270	295	290	290	295	295	290	270	295	290	290	295	295	290	265	290	285	280	285	290	285
	III (20)	Ветровые пролеты	375	315	405	320	320	305	320	375	315	405	320	320	305	320	370	305	400	305	310	300	305
		Весовые пролеты	250	250	250	250	250	200	245	250	250	250	250	250	200	245	250	250	250	250	250	200	245
		Габаритные пролеты	240	250	255	240	240	245	245	240	250	255	240	240	245	245	235	250	250	240	235	240	240
	IV (25)	Ветровые пролеты	335	270	355	280	280	275	270	335	270	355	280	280	275	270	330	265	350	270	270	265	270
	,==,	Весовые пролеты	250	250	250	250	250	200	245	250	250	250	250	250	200	245	250	250	250	250	250	200	245

(no napa	метрам г	Расчетные пролеты для опор проводов и троса ТК20-0/70-11.1мм-36кА2с-91кН	1)									YБ330⊦	ı–1.2 u YB33	80н−1.2к									
ВЛ,	н по гололеду толщ. ст., мм)	Марка провода	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	ACnk 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	ACnk 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44
P	ЭЛОЛ6 . СШ.,	Προβοσ σπαχ [κες/мм²]	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86
оворо! град.	DO 20	TK20-0/70-11.1mm-36kA2c-91kH	37,77	48,2	42,25	47,42	46,06	44,08	46,5	37,77	48,2	42,25	47,42	46,06	44,08	46,5	37,95	47,24	42,37	47,72	46,35	44,08	46,84
U VO2	Район (норм. г	OKFT-12-100 omax [ksc/mm²]	-	-	-	-	-	-	ı	-	-	-	-	-	-	1	-	-	-	-	-	-	-
-) ,	7 E	Район по ветру (нормативное давление, Па)		_		II (500)						_	III (650)							IV (800)			
		Габаритные пролеты	370	385	380	385	385	385	385	365	365	365	365	365	360	365	345	345	345	345	350	335	345
	(10)	Ветровые пролеты	505	410	505	405	410	385	400	505	385	420	385	390	360	380	415	360	370	365	365	335	365
		Весовые пролеты	250	250	250	250	250	200	245	250	250	250	250	250	200	245	250	250	250	250	250	200	245
		Габаритные пролеты	325	360	340	370	370	360	370	325	360	340	365	365	360	365	320	340	335	345	350	345	345
	11 (15)	Ветровые пролеты	455	375	475	385	385	360	395	455	370	475	385	390	360	385	445	360	470	365	365	340	365
15-45		Весовые пролеты	250	250	250	250	250	200	245	250	250	250	250	250	200	245	250	250	250	250	250	200	245
15-45		Габаритные пролеты	270	295	290	290	295	295	290	270	295	290	290	295	295	290	265	290	285	280	285	290	285
	III (20)	Ветровые пролеты	375	315	405	315	320	310	320	375	315	405	315	320	310	320	370	300	400	305	310	305	310
		Весовые пролеты	250	250	250	250	250	200	245	250	250	250	250	250	200	245	250	250	250	250	250	200	245
		Габаритные пролеты	240	250	255	240	240	245	245	240	250	255	240	240	245	245	235	250	250	240	235	240	240
	IV (25)	Ветровые пролеты	335	270	355	280	280	275	275	335	270	355	280	280	275	275	330	265	350	270	270	270	270
		Весовые пролеты	250	250	250	250	250	200	245	250	250	250	250	250	200	245	250	250	250	250	250	200	245

- 1. Расчетные пролеты приведены для опор УБ330н-3.1, УБ330н-3.1к, УБ330н-3.2 и УБ330н-3.2к. Пролеты соответствуют максимальным нагрузкам расчетных режимов (см. п. 3.5 общих данных 7.330.ЖБ.01-МП.02). Значения пролетов указаны в метрах.
- 2. Расчетные пролеты для опоры, приведенные в таблице, равны сумме равных смежных пролетов. Максимальное значение одного из смежных пролетов следует принимать не более половины от указанных.
- 3. В случаях оговоренных в п. 3.11 общих данных 7.330.ЖБ.01-МП.02 расчетные пролеты должны быть уточнены.
- 4. Для механического расчета проводов и тросов приняты следующие температуры воздуха: Ттах=+40°C, Tmin=-40°C, Тэкс=0°C, Тгол=-5°C, Твет=-5°C, Тгр=+15°C.

Изм.	Кол. ич.	/lucm	№ док.	Подп.	Дата

Лисп 7

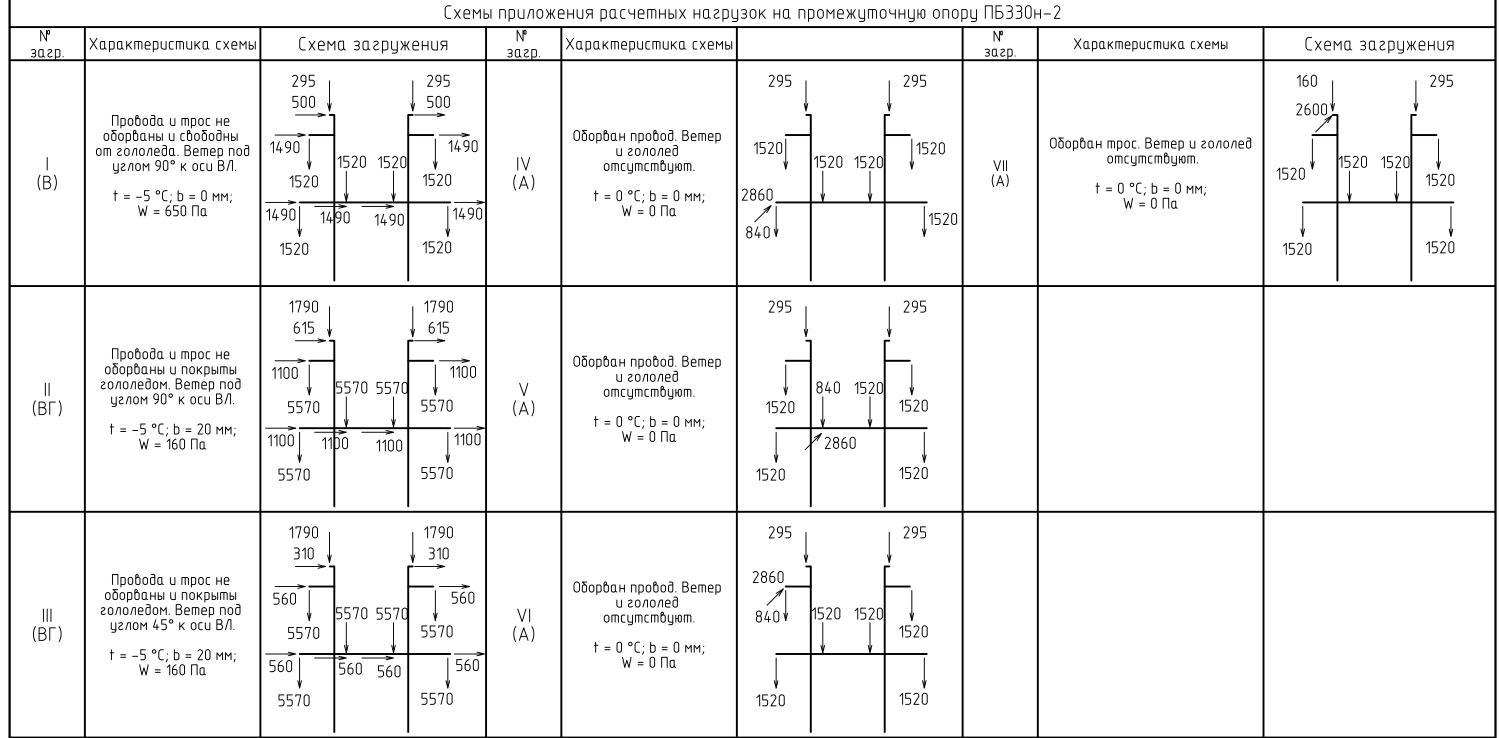
	(по параг	Расчетные пролеты для опор метрам проводов и троса ОКГТ–12–100)										УБ330 н	ı–1.1 u YБ33	0н-1.1к									
вл,	dy MM)	Марка провода	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	АСпк 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44
БE	гололес Іщ. ст., 1	Προβοσ σπαχ [κες/μμ²]	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86
оворог град.	по 20	TK20-0/70-11.1mm-36kA2c-91kH	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
20 <i>Л</i> П(Район (норм. п	ΟΚΓΤ-12-100 σmax [κεc/мм²]	35,71	48,04	40	47,14	45,67	40,94	44,49	35,71	48,04	40	47,14	45,67	40,94	44,49	35,82	46,84	40	46,84	45,01	41,61	44,74
2ħ	PC (HC	Район по ветру (нормативное давление, Па)				II (500)							III (650)							IV (800)			
		Габаритные пролеты	370	390	380	390	390	385	390	370	370	370	370	370	360	370	345	345	345	345	350	335	345
	(10)	Ветровые пролеты	440	395	440	390	395	385	390	370	370	370	370	375	360	370	350	345	345	350	355	335	345
		Весовые пролеты	220	220	220	220	220	200	220	220	220	220	220	220	200	220	220	220	220	220	220	200	220
		Габаритные пролеты	325	365	340	370	370	360	370	325	360	340	370	370	360	370	320	345	335	345	350	345	345
	II (15)	Ветровые пролеты	440	365	440	370	375	360	370	440	350	440	365	370	360	365	440	340	440	350	340	335	345
0-15		Весовые пролеты	220	220	220	220	220	200	220	220	220	220	220	220	200	220	220	220	220	220	220	200	220
U- 15		Габаритные пролеты	270	295	290	290	295	295	290	270	295	290	290	295	295	290	265	290	285	280	285	290	285
	III (20)	Ветровые пролеты	375	305	405	310	310	305	310	375	305	405	310	310	305	310	370	290	390	300	300	300	300
		Весовые пролеты	220	220	220	220	220	200	220	220	220	220	220	220	200	220	220	220	220	220	220	200	220
		Габаритные пролеты	240	250	255	240	240	245	245	240	250	255	240	240	245	245	235	250	250	240	235	240	240
	IV (25)	Ветровые пролеты	335	265	355	275	275	275	275	335	265	355	275	275	275	275	330	255	330	260	270	265	265
	,	Весовые пролеты	220	220	220	220	220	200	220	220	220	220	220	220	200	220	220	220	220	220	220	200	220

	(no nana	Расчетные пролеты для опор иметрам проводов и троса ОКГТ-12-100)										УБ330 н	-1.2 u Y533	0н-1.2к									
ВЛ,	nonedy cm., MM)	Марка провода	AC 240/32	АСпк 240/32	AC 300/39	ACnk 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	ACnk 300/39	ACĸ2y 300/39	AC 400/51	АСВП 295/44	AC 240/32	АСпк 240/32	AC 300/39	ACnk 300/39	ΑCκ2y 300/39	AC 400/51	АСВП 295/44
l g	. CM.	Προδοd σmαx [κεc/мм²]	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86	12,15	15,37	12,15	15	14,51	12,15	14,86
оворог град.	1 NO 20/ MO/W.	TK20-0/70-11.1mm-36kA2c-91kH	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10 VOS	Район (норм. п	OKFT-12-100 omax [kzc/mm²]	35,71	48,04	40	47,14	45,67	40,94	44,49	35,71	48,04	40	47,14	45,67	40,94	44,49	35,82	46,84	40	46,84	45,01	41,61	44,74
Γĥ	P. E.	Район по ветру (нормативное давление, Па)				II (500)							III (650)							IV (800)			
		Габаритные пролеты	370	385	380	385	385	385	385	365	365	365	365	365	360	365	345	345	345	345	350	335	345
	(10)	Ветровые пролеты	440	385	440	390	390	385	385	365	365	365	370	360	360	360	350	360	345	350	345	335	345
		Весовые пролеты	220	220	220	220	220	200	220	220	220	220	220	220	200	220	220	220	220	220	220	200	220
		Габаритные пролеты	325	360	340	370	370	360	370	325	360	340	365	365	360	365	320	340	335	345	350	345	345
	II (15)	Ветровые пролеты	440	365	440	375	370	360	365	440	350	440	370	365	360	365	440	340	440	345	350	340	345
15-45		Весовые пролеты	220	220	220	220	220	200	220	220	220	220	220	220	200	220	220	220	220	220	220	200	220
15-45		Габаритные пролеты	270	295	290	290	295	295	290	270	295	290	290	295	295	290	265	290	285	280	285	290	285
	III (20)	Ветровые пролеты	375	305	405	310	310	310	310	375	305	405	310	310	310	310	370	295	400	300	300	305	300
		Весовые пролеты	220	220	220	220	220	200	220	220	220	220	220	220	200	220	220	220	220	220	220	200	220
		Гαδαритные пролеты	240	250	255	240	240	245	245	240	250	255	240	240	245	245	235	250	250	240	235	240	240
	IV (25)	Ветровые пролеты	335	265	355	270	275	275	275	335	265	355	270	275	275	275	330	260	350	260	265	265	265
		Весовые пролеты	220	220	220	220	220	200	220	220	220	220	220	220	200	220	220	220	220	220	220	200	220

- 1. Расчетные пролеты приведены для опор УБЗЗОн-3.1, УБЗЗОн-3.1к, УБЗЗОн-3.2 и УБЗЗОн-3.2к. Пролеты соответствуют максимальным нагрузкам расчетных режимов (см. п. 3.5 общих данных 7.330.ЖБ.О1-МП.О2). Значения пролетов указаны в метрах.
- 2. Расчетные пролеты для опоры, приведенные в таблице, равны сумме равных смежных пролетов. Максимальное значение одного из смежных пролетов следует принимать не более половины от указанных.
- 3. В случаях оговоренных в п. 3.11 общих данных 7.330.ЖБ.01-МП.02 расчетные пролеты должны быть уточнены.
- 4. Для механического расчета проводов и тросов приняты следующие температуры воздуха: $Tmax=+40^{\circ}C$, $Tmin=-40^{\circ}C$, $Tskc=0^{\circ}C$, $Tson=-5^{\circ}C$, $Tsem=-5^{\circ}C$, $Tsp=+15^{\circ}C$.

						Γ
						l
Изм.	Кол. уч.	/lucm	№ док.	Подп.	Дата	l

/lucm


	Схемы прилож	ения расчетных нагруз	зок на п	ромежуточную оп	ору ПБ330н-1
№ 30.2D.	Характеристика схемы	Схема загружения	№ 30.2D.	Характеристика схемы	Схема загружения
(B)	Провода и трос не оборваны и свободны от гололеда. Ветер под углом 90° к оси ВЛ. † = -5°C; b = 0 мм; W = 650 Па	210 \ 350	IV (A)	Оборван провод. Ветер и гололед отсутствуют. t = 0°C; b = 0 мм; W = 0 Па	210 \
 (ВГ)	Провода и трос не оборваны и покрыты гололедом. Ветер под углом 90° к оси ВЛ. t = -5°C; b = 20 мм; W = 160 Па	1260 340 600 4050 4050 4050	V (A)	Оборван провод. Ветер и гололед отсутствуют. t = 0 °C; b = 0 мм; W = 0 Па	210 \ 2860 650 1050 1050
Ⅲ (A)	Оборван провод. Ветер и гололед отсутствуют. † = 0°C; b = 0 мм; W = 0 Па	210 1050 1050 2860 650	VI (A)	Оборван трос. Ветер и гололед отсутствуют. † = 0°C; b = 0 мм; W = 0 Па	130 2210 1050 1050

Нагрузки от давления ветра на конструкцию промежуточной опоры ПБЗЗОн-1

Ветровой район		III		
Направление ветра	под углом 90° к оси ВЛ	под углом 4	-5° κ οcu ΒΛ	под углом 0° к оси ВЛ
Шифр орори	Суммарное	давление ветр	а на конструкс	цию опоры
Шифр опоры	Qx, kzc	Qx, kzc	Qу, кгс	Qy, кгс
ПБ330н-1	<u>3140</u> 780	<u>2310</u> 535	<u>2880</u> 720	<u>3810</u> 960

- 1. На схемах приведены максимальные нагрузки для наиболее неблагоприятных климатических условий, в кгс;
- 2. Все нагрузки приведены для расчета опоры по первой группе предельных состояний;
- 3. Нагрузки от проводов нового поколения (ПНП), других типов проводов и тросов не должны превышать значений, приведенных на схемах в соответствующих режимах;
- 4. В таблице нагрузок от давления ветра и веса гололеда на конструкции опор: в числителе указаны значения нагрузок от ветрового давления в режиме максимальный ветер, в знаменателе в режиме ветер при гололеде;
- 5. При проектировании ВЛ ветровая нагрузка на конструкции опоры для ветровых районов, отличных от указанных на схемах определяется проектными организациями.

						7.330.ЖБ.01-	-МП.О	5	
Изм.	Кол. уч.	/lucm	№ док.	Подп.	Дата		16 2 1	n 1	
							Стадия	/lucm	Листов
								1	4
						Расчетные нагрузки	"Poccemu	- Филиал - Филиал	технический 🛮
							ЦЕ	ентр"-Сиб	ENNH

- 1. На схемах приведены максимальные нагрузки для наиболее неблагоприятных климатических условий, в кгс;
- 2. Все нагрузки приведены для расчета опоры по первой группе предельных состояний;
- 3. Нагрузки от проводов нового поколения (ПНП), других типов проводов и тросов не должны превышать значений, приведенных на схемах в соответствующих режимах;
- 4. В таблице нагрузок от давления ветра и веса гололеда на конструкции опор: в числителе указаны значения нагрузок от ветрового давления в режиме максимальный ветер, в знаменателе в режиме ветер при гололеде;
- 5. При проектировании ВЛ ветровая нагрузка на конструкции опоры для ветровых районов, отличных от указанных на схемах определяется проектными организациями.

Нагрузки от давления ветра на конструкцию промежуточной опоры ПБЗЗОн-2

			.p	
Ветровой район			III	
Направление ветра	под углом 90° к оси ВЛ	под углом 4	+5° к оси ВЛ	под углом 0° к оси ВЛ
Шифр орори	Суммарн	юе давление ве	етра на констру	Јкцию опоры
Шифр опоры	Qx, kzc	Qx, kzc	Qy, kzc	Qy, ĸzc
ПБ330н-2	<u>6100</u> 1500	<u>5550</u> 1120	<u>5370</u> 1320	<u>7160</u> 1970

Изм.	Кол. ич.	/lucm	№ док.	Подп.	Дата

7.330.ЖБ.01-МП.05

Лист 2

		Схемы приложения расчетных нагруз	ок на про	межуточную опору ПБ330н-3	
№ 302p.	Характеристика схемы	Схема загружения	№ 30.2D.	Характеристика схемы	Схема загружения
(B)	Провода и трос не оборваны и свободны от гололеда. Ветер под углом 90° к оси ВЛ. † = -5 °C; b = 0 мм; W = 650 Па	295 430 1490 1490 1520 1520 1520	IV (A)	Оборван провод. Ветер и гололед отсутствуют. † = 0 °C; b = 0 мм; W = 0 Па	295 2860 840 1520 1520
II (ВГ)	Провода и трос не оборваны и покрыты гололедом. Ветер под углом 90° к оси ВЛ. † = -5°C; b = 20 мм; W = 160 Па	1745 520 1100 1100 1100 5570 5570	V (A)	Оборван провод. Ветер и гололед отсутствуют. † = 0 °C; b = 0 мм; W = 0 Па	295 2860 1520 840 1520
III (ВГ)	Провода и трос не оборваны и покрыты гололедом. Ветер под углом 45° к оси ВЛ. † = -5°C; b = 20 мм; W = 160 Па	1745 520 560 560 560 5570 5570 5570	VI (A)	Оδорван трос. Ветер и гололед отсутствуют.	160 295 2600 1520 1520

- 1. На схемах приведены максимальные нагрузки для наиболее неблагоприятных климатических условий, в кгс;
- 2. Все нагрузки приведены для расчета опоры по первой группе предельных состояний;
- 3. Нагрузки от проводов нового поколения (ПНП), других типов проводов и тросов не должны превышать значений, приведенных на схемах в соответствующих режимах;
- 4. В таблице нагрузок от давления ветра и веса гололеда на конструкции опор: в числителе указаны значения нагрузок от ветрового давления в режиме максимальный ветер, в знаменателе в режиме ветер при гололеде;
- 5. При проектировании ВЛ ветровая нагрузка на конструкции опоры для ветровых районов, отличных от указанных на схемах определяется проектными организациями.

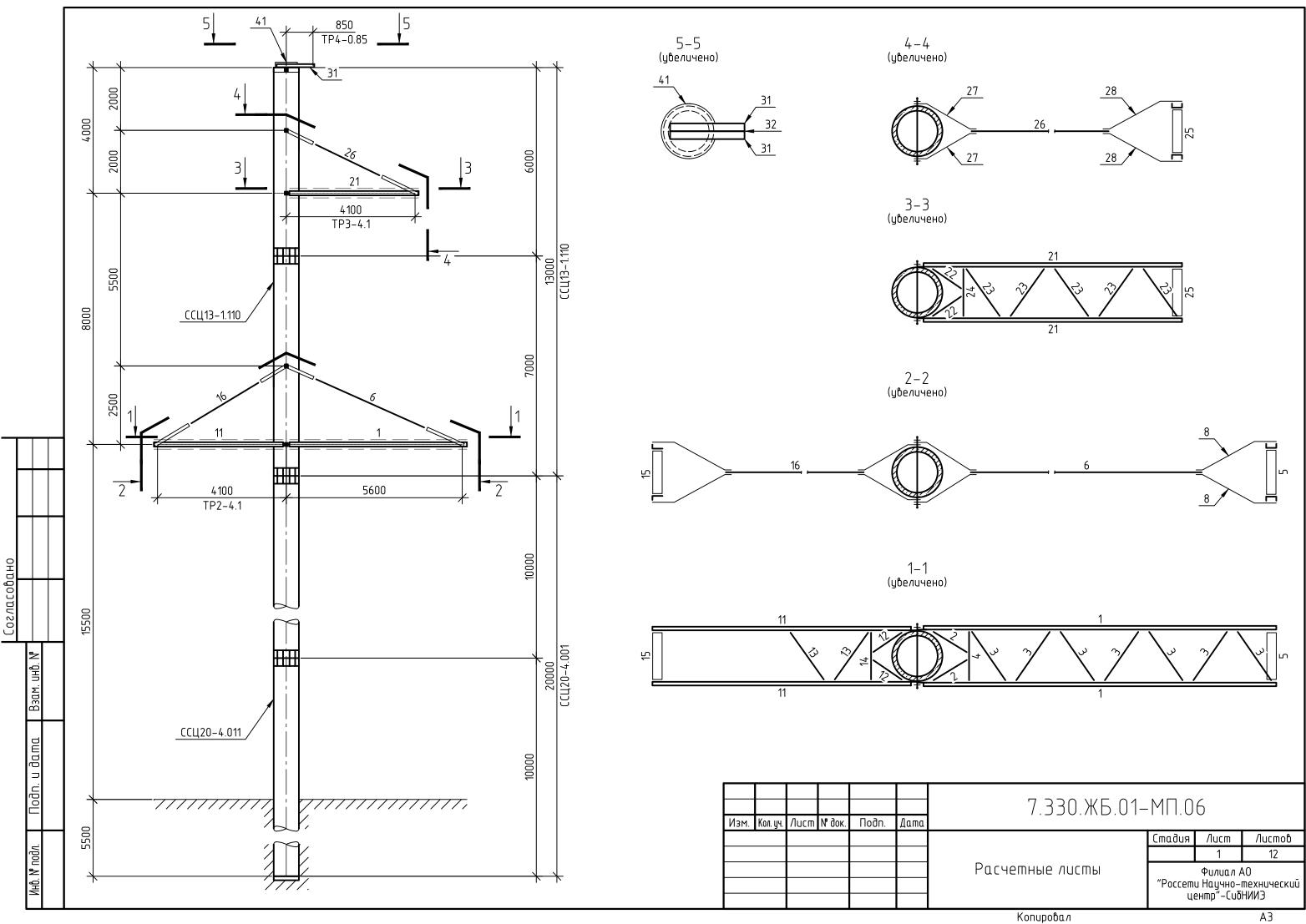
Нагрузки от давления ветра на конструкцию промежуточной опоры ПБЗЗОн-З

	<u>'</u>	13,	, ,	1
Ветровой район			III	
Направление ветра	под углом 90° к оси ВЛ	под углом 4	₊5° к оси ВЛ	под углом 0° к оси ВЛ
Шифр орори	Суммарн	юе давление ве	тра на констру	ЈКЦИЮ ОПОРЫ
Шифр опоры	Qx, kzc	Qx, kzc	Qу, кгс	Qy, kzc
ПБ330н-3	<u>3470</u> 880	<u>2560</u> 640	<u>2800</u> 700	<u>4800</u> 1200
				A.com

7.330.ЖБ.01-МП.05

 Κοπυροθα*π* A3

		Схемы приложения расчетных нагрузо	к на анке	ерно-угловую опору УБ330н-1	
У° 30.2р.	Характеристика схемы	Схема загружения	№ 30.2р.	Характеристика схемы	Схема загружения
 (В)	Провода и трос не оборваны и свободны от гололеда. Ветер под углом 90° к оси ВЛ. Угол поворота оси ВЛ 45° † = -5°C; b = 0 мм; W = 650 Па	170 170 4040 3790 9960 9960 1680 9660	IV (A)	Оборван провод. Ветер отсутствует. Провода и трос покрыты гололедом. Угол поворота оси ВЛ 45° † = -5°C; b = 20 мм; W = 0 Па	360 1820 4800 4500 13000 5960 5380
II (ВГ)	Провода и трос не оборваны и покрыты гололедом. Ветер под углом 90° к оси ВЛ. Угол поворота оси ВЛ 45° † = -5°C; b = 20 мм; W = 160 Па	430 1820 4800 4800 4500 13000 13000 5960 11860	V (A)	Оборван трос. Ветер отсутствует. Провода и трос покрыты гололедом. Угол поворота оси ВЛ 45° † = -5°C; b = 20 мм; W = 0 Па	360 910 2000 13000 13000 5960 11860
∭ (BΓ)	Провода и трос не оборваны и покрыты гололедом. Ветер под углом 90° к оси ВЛ. Угол поворота оси ВЛ 30° † = -5°C; b = 20 мм; W = 160 Па	430 1820 3240 3240 2260 11000 11000 6030 6980	VI (A)	Оборван трос. Ветер отсутствует. Провода и трос покрыты гололедом. Угол поворота оси ВЛ 0° † = -5°C; b = 20 мм; W = 0 Па	360 910


- 1. На схемах приведены максимальные нагрузки для наиболее неблагоприятных климатических условий, в кгс;
- 2. Все нагрузки приведены для расчета опоры по первой группе предельных состояний;
- 3. Нагрузки от проводов нового поколения (ПНП), других типов проводов и тросов не должны превышать значений, приведенных на схемах в соответствующих режимах;
- 4. В таблице нагрузок от давления ветра и веса гололеда на конструкции опор: в числителе указаны значения нагрузок от ветрового давления в режиме максимальный ветер, в знаменателе – в режиме ветер при гололеде;
- 5. При проектировании ВЛ ветровая нагрузка на конструкции опоры для ветровых районов, отличных от указанных на схемах определяется проектными организациями.

Нагризки от давления ветра на констрикцию анкерно-игловой опоры УБЗЗОн-1

	pg.r.q.a.a		
		III	
под углом 90° к оси ВЛ	под углом 4	.5° к оси ВЛ	под углом 0° к оси ВЛ
Суммарн	юе давление ве	тра на констру	ЈКЦИЮ ОПОРЫ
Qx, kzc	Qx, kzc	Qу, кгс	Qy, kzc
<u>1570</u> 390	<u>1250</u> 310	<u>1250</u> 310	<u>1570</u> 390
	под углом 90° к оси ВЛ Суммарн Qx, кгс	под углом 90° под углом 4 К оси ВЛ под углом 4 Суммарное давление ве Qx, кгс Qx, кгс	под углом 90° под углом 45° к оси ВЛ Суммарное давление ветра на констру

Подп. Изм. Кол. уч. Лист № док.

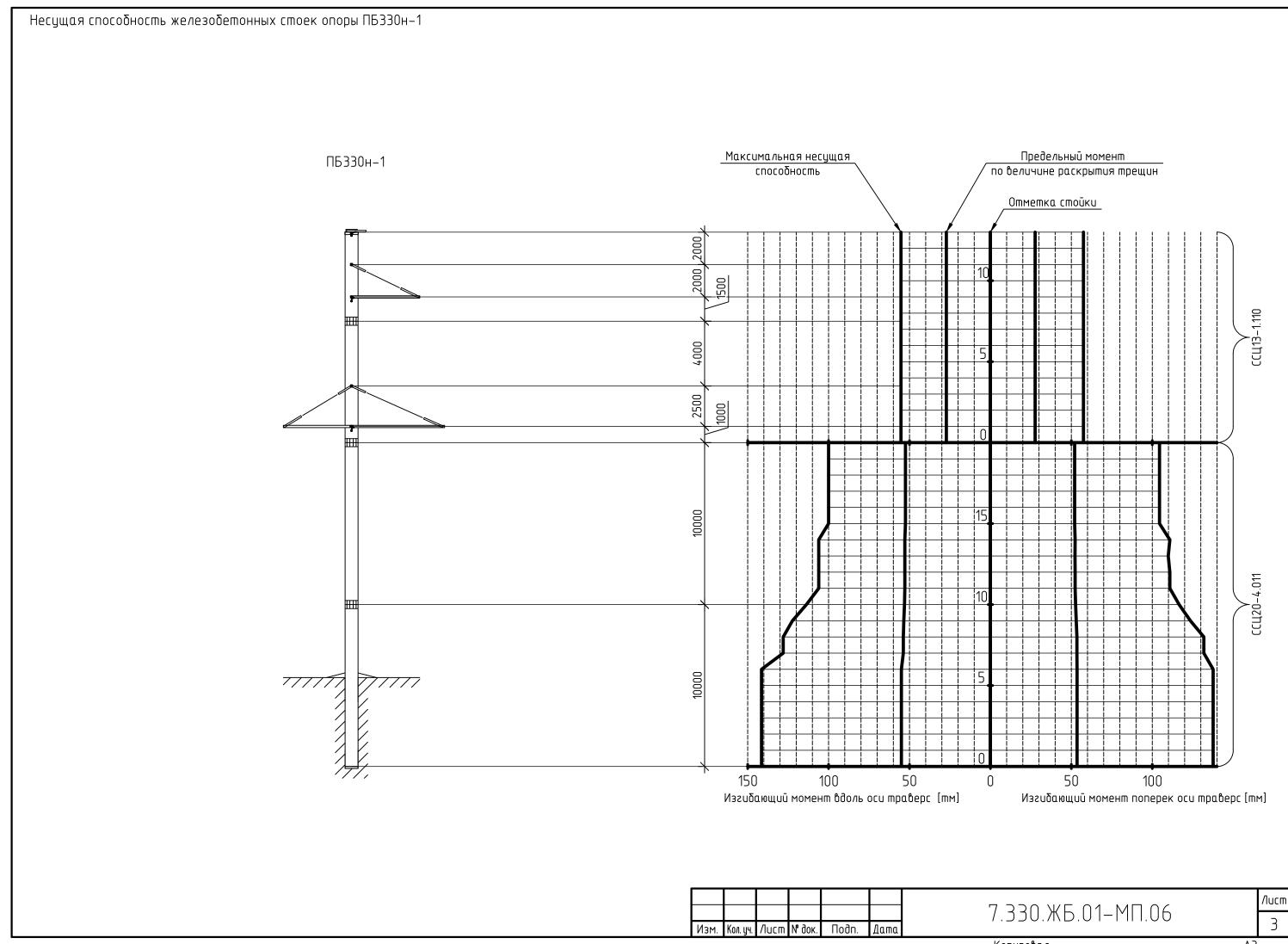
7.330.ЖБ.01-МП.05

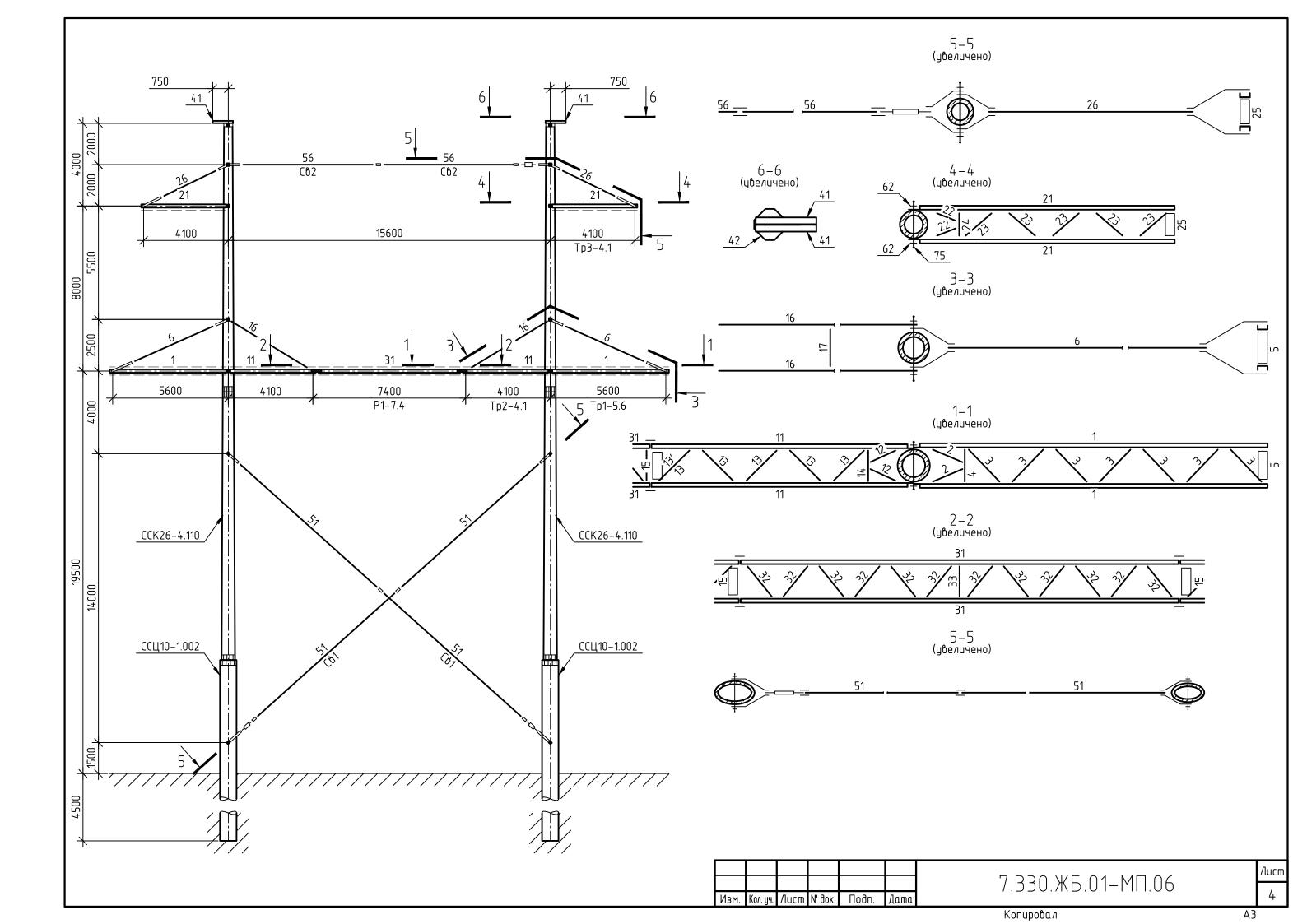
	Подбор сортамента опоры ПБЗЗОн–1 - Тип Номер Исж Ираст Му Мг , Комб Пл.сеч., Ітіп, Рад.инерц. [см] L, К-т расч. Lef, , , , , , , к-т исл. о Ry, - , ,																								
Секция	Tun 3/1-ma	Номер эл-та	Nсж [m]	Npacm [m]	Му [mм]	Mz [mm]	am/ad	Комб. загр.	Сечение	Пл.сеч., [см²]	lmin, [cm ⁴]	Рад.ине i _x	рц. [см] i _v	L, [cm]	К-т расч. длины	Lef, [cm]	λ	[λ]	φ	К-т усл. работы	σ [κε/cm²]	Ry, [ĸz/cm²]	Болты	Обрез	Нес. спос. болт. соед. [m]
5.6	n	1	-19,16	17,30	0,24	0,00	1,00	٧	[16∏	18,1	72,8	6,44	2,00	560	1,00	560	87	120	0,573	1,00	1848	2400	1xM48C355	2,0	33,2
1-5	рс	2	-2,56	2,60	0,00	0,00	1,03	V	L50x5	4,8	4,6	1,53	0,98	76	1,00	76	78	180	0,616	0,75	1189	3400	1xM165,8	2,0	4,0
l Ω ⊥ I	рс	3	-2,46	0,22	0,00	0,00	1,03	V	L50x5	4,8	4,6	1,53	0,98	79	0,98	78	79	180	0,605	0,75	1162	3400	1xM165,8	2,0	4,0
) da	ра	4	-2,90	2,90	0,00	0,00	1,00	V	L50x5	4,8	4,6	1,53	0,98	68	0,80	54	56	180	0,789	0,75	1021	3400	1xM165,8	2,0	4,0
paßı	рα	5	-4,40	0,00	0,10	0,00	1,00	II	T150x135	18,1	72,8	9,07	5,18	90	1,00	90	17	120	0,958	0,75	338	2400	1xM208,8	2,0	9,9
	m	6	0,00	16,60	0,00	0,00	1,00	II	ø32	8	0,5	0,80	0,80	613	1,00	613	-	-	-	0,90	2293	2300	1xM248,8	2,0	30,6
4.1	п	11	-14,31	2,00	0,18	0,00	1,00	=	[16∏	18,1	72,8	6,44	2,00	410	1,00	410	64	120	1,000	1,00	1454	2400	1xM48C355	2,0	35,3
7-70	рс	12	-2,59	2,60	0,00	0,00	1,03	II	L50x5	4,8	4,6	1,53	0,98	76	1,00	76	78	120	0,616	0,75	1203	3400	1xM165,8	2,0	4,3
a TF	рс	13	-2,60	0,20	0,00	0,00	1,03	III	L50x5	4,8	4,6	1,53	0,98	79	0,73	58	59	180	0,766	0,75	971	3400	1xM165,8	2,0	4,0
Оерсс	рα	14	-2,95	0,20	0,00	0,00	1,00	=	L50x5	4,8	4,6	1,53	0,98	68	0,73	50	51	180	0,820	0,75	999	3400	1xM165,8	2,0	4,0
pabe	рα	15	-4,20	0,00	0,10	0,00	1,00	1	T150x135	18,1	72,8	9,07	5,18	90	1,00	90	17	250	0,958	1,00	242	2400	2xM20_8,8	2,0	17,8
11	m	16	0,00	10,08	0,00	0,00	1,00	11	ø32	8	0,5	0,80	0,80	478	1,00	478	ı	-	-	0,90	1393	2300	1xM248,8	2,0	30,6
4.1	п	17	-14,47	12,80	0,18	0,00	1,00	IV	[16∏	18,1	72,8	6,44	2,00	410	1,00	410	64	250	0,717	1,00	1454	2400	1xM48_C355	2,0	33,2
P3-	рс	21	-2,58	2,60	0,00	0,00	1,03	IV	L50x5	4,8	4,6	1,53	0,98	62	1,00	62	63	120	0,733	0,75	1006	3400	1xM165,8	2,0	4,0
a Tf	рс	22	2,60	-0,20	0,00	0,00	1,03	IV	L50x5	4,8	4,6	1,53	0,98	68	1,04	71	72	180	0,661	0,75	1125	3400	1xM165,8	2,0	4,0
ерсо	рα	23	-2,95	3,02	0,00	0,00	1,00	IV	L50x5	4,8	4,6	1,53	0,98	60	0,90	54	55	120	0,792	0,75	1035	3400	1xM165,8	2,0	4,3
αβe	рα	24	-5,20	-0,20	0,20	0,00	1,00	II	T150x135	18,1	72,8	9,07	5,18	90	1,00	90	17	120	0,958	0,75	400	2400	2xM208,8	2,0	19,1
Трі	m	25	0,00	11,90	0,00	0,00	1,00	II	ø32	8	0,5	0,80	0,80	478	1,00	478	-	_		0,90	1644	2300	1xM248,8	2,0	30,6
Траверса ТР4	п	26	-0,10	0,13	1,10	1,60	1,00	VI	2L100x7	27,5	261,2	3,08	3,08	53	1,00	53	17	120	1,000	1,00	3233	3400	1xM248,8	2,0	10,8

п – пояс;

ρς – ραςκος;

ра – распорка;


. Пизапараціб — б


2. В графе комбинация загружений в числителе приведен номер комбинации при которой в элементе возникает максимальное сжимающее усилие, в знаменателе — растягивающее. Без дроби указаны номера комбинаций соответствующие максимальному усилию в элементе;

						Γ
						l
Изм.	Кол. уч.	/lucm	№ док.	Подп.	Дата	l

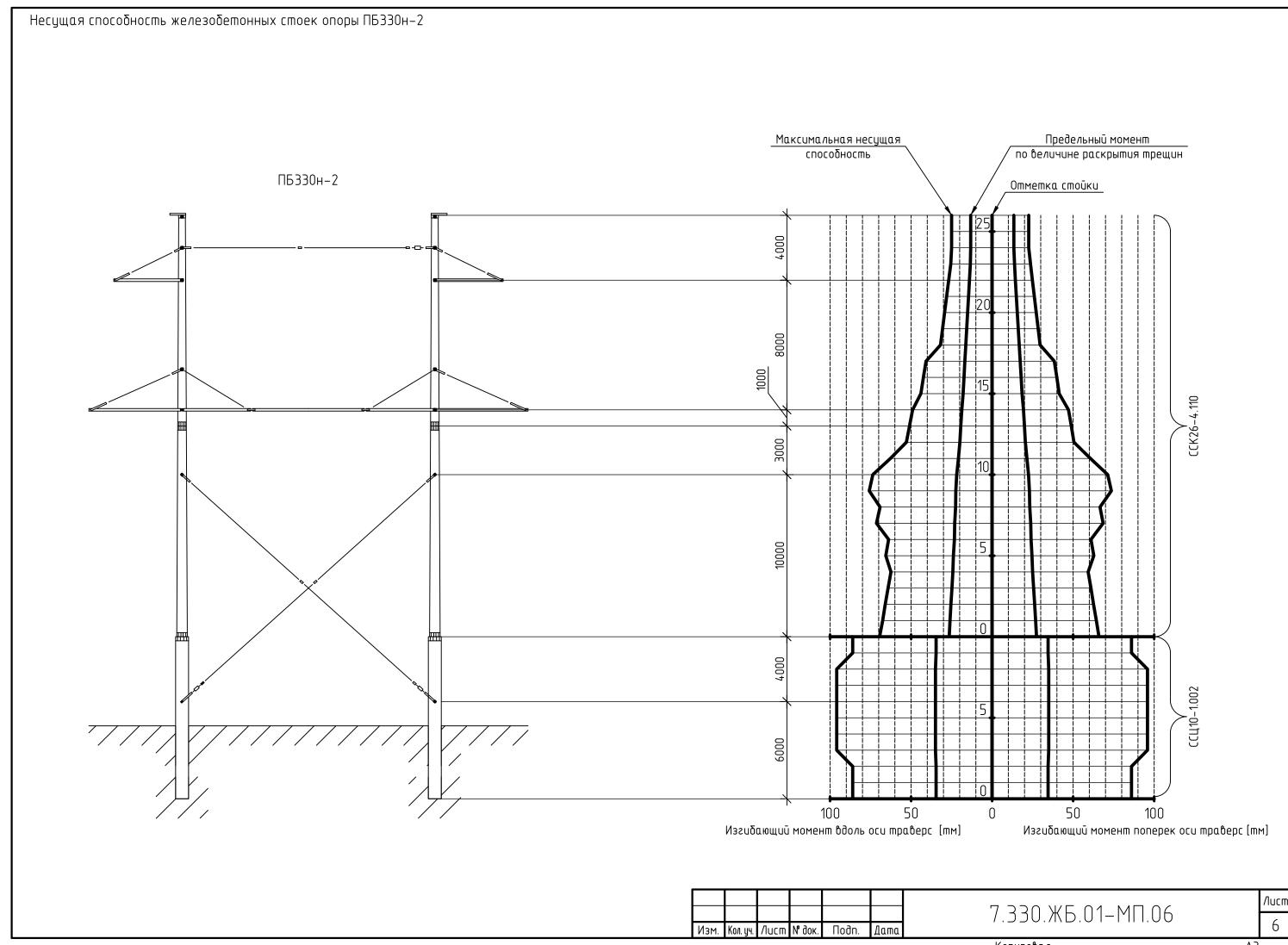
7.330.ЖБ.01-МП.06

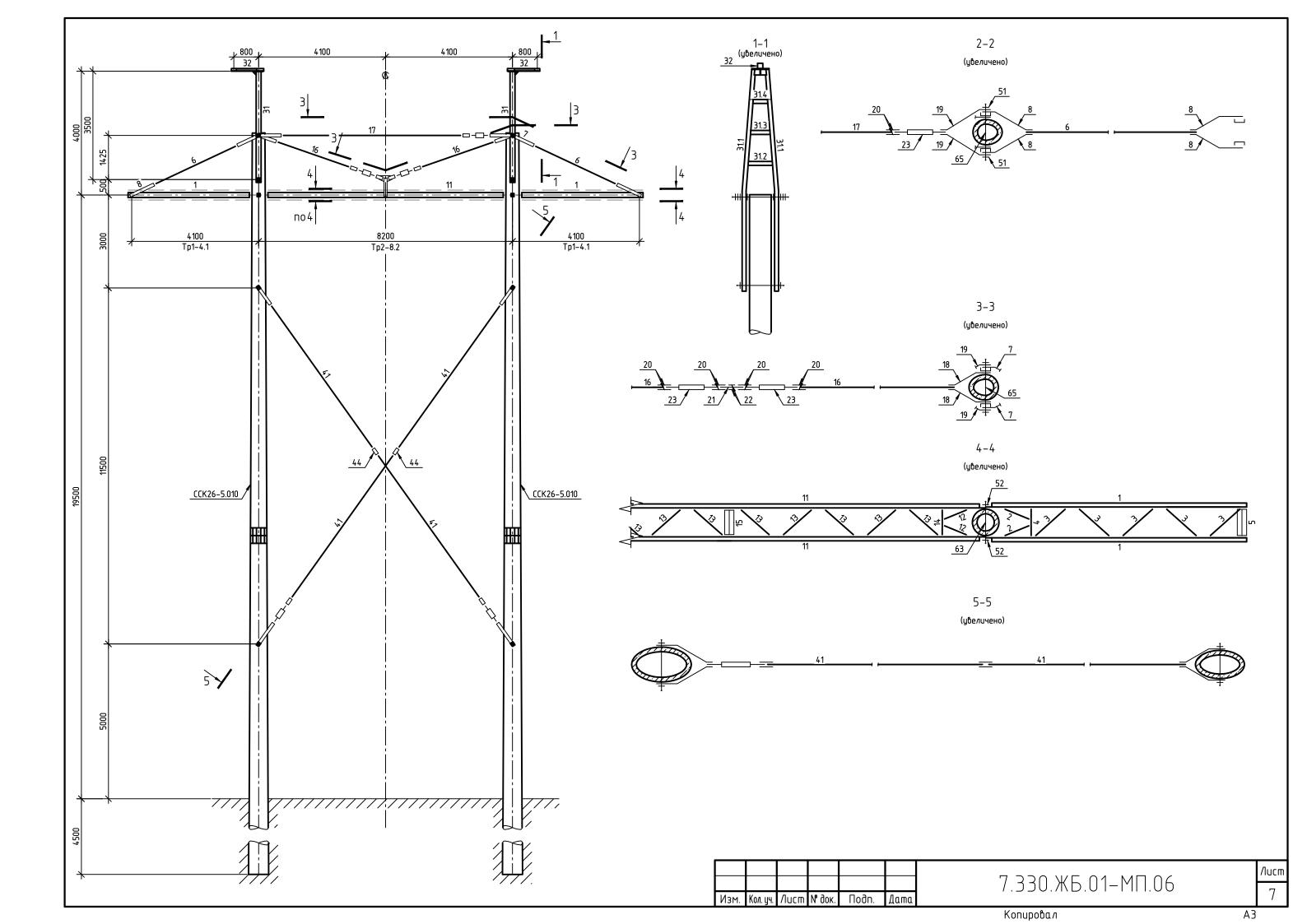
/lucm

											Подбор со	отамента	опоры ПБЗ:	30н-2											
_	Tun	Номер	Исж	Npacm	Му	Mz	l	Комб.		Пл.сеч.,	lmin,	Рад.ине	рц. [см]	L,	К-т расч.	Lef,		5 . 1		K-m ус <i>п</i> .	σ	Ry,			Hec. cnoc.
Секция	3/1-MQ	эл-та	[m]	[m]	[mm]	[mm]	am/ad	загр.	Сечение	[см ²]	[cm ⁴]	i _x	i _v	[cm]	длины	[cm]	λ	[λ]	φ	работы	[ĸz/cm²]	[ĸz/cm²]	Болты	Обрез	болт. coed. [m]
9:9	Π	1	-22,70	17,30	0,19	0,15	1,00	٧	[16∏	18,1	72,8	6,44	2,00	560	1,00	560	87	120	0,573	1,00	2189	2400	1xM48C355	2,0	33,2
P1-5.	рс	2	-3,39	3,40	0,00	0,00	1,00	V	L50x5	4,8	4,6	1,53	0,98	73	1,00	73	74	200	0,643	0,75	1464	3400	1xM165,8	2,0	4,0
⊢	рс	3	-3,20	3,20	0,00	0,00	1,00	V	L50x5	4,8	4,6	1,53	0,98	88	0,96	85	86	200	0,548	0,75	1621	3400	1xM165,8	2,0	4,0
ерса	рα	4	-2,40	2,40	0,00	0,00	1,00	V	L50x5	4,8	4,6	1,53	0,98	62	0,73	45	46	200	0,847	0,75	787	3400	1xM165,8	2,0	4,0
рав	рα	5	-3,63	0,00	0,00	0,00	1,00	II	T150x135	18,1	72,8	9,07	5,18	62	1,00	62	12	120	0,983	1,00	204	2400	2xM208,8	2,0	17,8
<u> </u>	m	6	0,00	15,10	0,00	0,00	1,00	II	ø32	8	0,5	0,80	0,80	500	1,00	500	-	-	-	0,90	2086	2300	1xM248,8	2,0	15,3
-	n	11	-31,40	2,00	0,13	0,00	1,00	IV	[16∏	18,1	72,8	6,44	2,00	410	1,00	410	64	120	1,000	1,00	1735	2400	1xM48C355	2,0	35,3
-4-	рс	12	-1,80	1,60	0,00	0,00	1,00	IV	L50x5	4,8	4,6	1,53	0,98	69	1,00	69	70	120	0,677	0,75	739	3400	1xM165,8	2,0	4,3
TP2	рс	13	-1,50	1,50	0,00	0,00	1,00	IV	L50x5	4,8	4,6	1,53	0,98	87	0,73	64	65	200	0,721	0,75	578	3400	1xM165,8	2,0	4,0
Ü	рα	14	-1,10	0,20	0,00	0,00	1,00	IV	L50x5	4,8	4,6	1,53	0,98	62	0,73	45	46	200	0,847	0,75	361	3400	1xM165,8	2,0	4,0
раверса	рα	15	-3,14	0,00	0,00	0,00	1,00	II	T150x135	18,1	72,8	9,07	5,18	62	1,00	62	12	250	0,983	1,00	176	2400	2xM208,8	2,0	17,8
T _{pq}	m	16	0,00	5,80	0,00	0,00	1,00	II	L80x6	9,4	23,5	2,47	1,58	480	1,00	480	194	200	0,124	0,90	687	3400	1xM245,8	2,0	7,1
	рα	17	0,00	0,20	0,00	0,00	1,00	III	L50x5	4,8	4,6	1,53	0,98	51	1,00	51	52	250	0,812	0,90	46	3400	1xM165,8	2,0	4,0
4.1	п	21	-23,63	21,65	0,34	0,12	1,00	V	[16П	18,1	72,8	6,44	2,00	410	1,00	410	64	120	0,717	1,00	2392	2400	1xM48C355	2,0	33,2
 TP3-	рс	22	-1,75	1,75	0,00	0,00	1,00	V	L50x5	4,8	4,6	1,53	0,98	62	1,00	62	63	200	0,733	0,75	663	3400	1xM165,8	2,0	4,0
μ	рс	23	-3,80	3,74	0,05	0,00	1,00	V	L50x5	4,8	4,6	1,53	0,98	81	0,90	73	74	120	0,644	0,75	1639	3400	1xM165,8	2,0	4,3
өрс	рα	24	2,60	0,90	0,00	0,00	1,00	IV	L50x5	4,8	4,6	1,53	0,98	51	0,73	37	38	200	0,890	0,75	812	3400	1xM165,8	2,0	4,3
pabe	рα	25	-3,75	0,20	0,00	0,00	1,00		T150x135	18,1	72,8	9,07	5,18	51	1,00	51	10	250	1,000	1,00	207	2400	2xM205,8	2,0	11,6
	m	26	0,00	13,98	0,00	0,00	1,00	II	ø32	8	0,5	0,80	0,80	51	1,00	51	_	-	_	0,90	1931	2300	1xM248,8	2,0	15,3
Д. 4.	п	31	-13,65	12,90	0,20	0,11	1,00	II	[16∏	18,1	72,8	6,44	2,00	740	1,00	740	115	120	0,418	1,00	1806	2400	1xM278,8	2,0	19,4
аспорка Р1-7.4	рс	32	-1,92	1,80	0,00	0,00	1,00	VI	L50x5	4,8	4,6	1,53	0,98	78	1,00	78	80	200	0,600	0,75	888	3400	1xM165,8	2,0	4,3
	рα	33	-0,70	0,82	0,00	0,00	1,00	V	L40x4	3,1	1,9	1,22	0,78	60	0,80	48	62	200	0,746	0,75	406	3400	1xM165,8	2,0	4,3
Траверса ТР4	n	41	-0,94	0,94	0,94	1,34	1,00	II	2L100x7	27,5	261,2	3,08	3,08	53	1,00	53	17	150	0,944	1,00	2859	3400	1xM245,8	2,0	7,7
Связь Св1	n	51	0,00	4,30	0,00	0,00	1,00	II	Ø20	3,1	0,30	0,40	0,40	156	1,00	156	-	-	-	0,90	1521	2400	1xM208,8	2,0	7,7
Связь Св2	П	56	0,00	29,13	0,00	0,00	1,00	1	ø36	10,2	0,50	0,80	0,80	2100	1,00	2100	-	-	-	0,90	3180	3400	1xM248,8	2,0	15,3

п – пояс;

рс – раскос; ра – распорка;


д – диафрагма.


2. В графе комбинация загружений в числителе приведен номер комбинации при которой в элементе возникает максимальное сжимающее усилие, в знаменателе - растягивающее. Без дроби указаны номера комбинаций соответствующие максимальному усилию в элементе;

Изм.	Кол. уч.	/lucm	№ док.	Подп.	Дата

7.330.ЖБ.01-МП.06

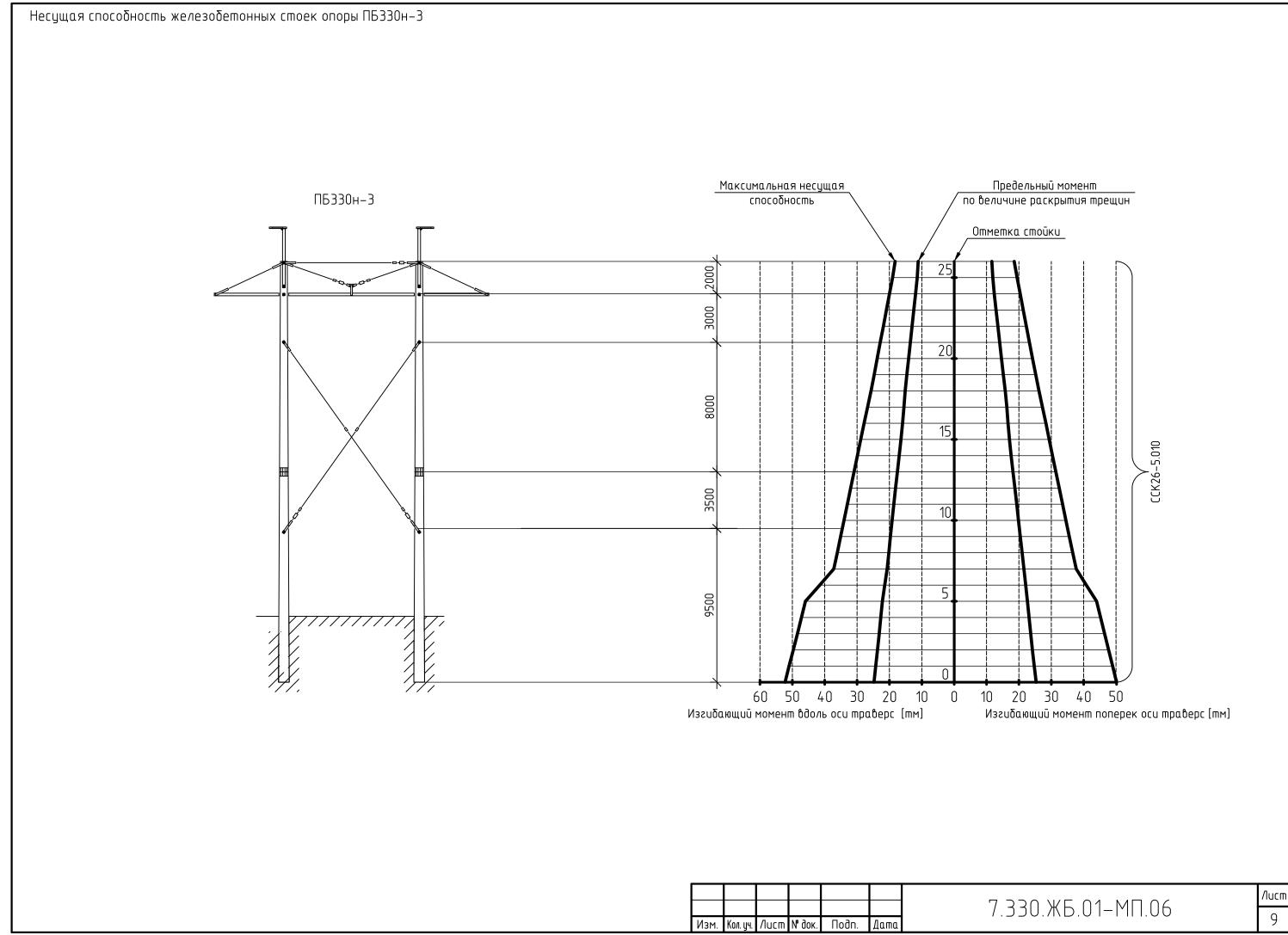
/lucm

											Подбор (ортамент	а опоры ПЕ	3330н-3											
Секция	Tun	Номер	Исж	Npacm	My	Mz	am/ad	Комб.	Сечение	Пл.сеч.,	lmin,	Рад.ине	рц. [см]	L,	К-т расч.	Lef,	,	[λ]	"	K-m yc <i>n</i> .	σ	Ry,	Болты	Обрез	Hec. cnoc.
Секция	3/1-ma	эл-та	[m]	[m]	[mm]	[mm]	uiii/uu	загр.		[cм ²]	[cm ⁴]	i _x	i _v	[cm]	длины	[cm]	^	[7]	Ψ	рαдошы	[ks/cm²]	[KZ/CM ²]	БОЛПЫ	оорез	δο/ιπ. coed. [m]
4.1	n	1	-26,69	17,30	0,17	0,00	1,00	IV	[16П	18,1	72,8	6,44	2,00	410	1,00	410	64	120	0,717	1,00	2056	2400	1xM48C355	2,0	33,2
P. 1	рс	2	-3,39	3,40	0,00	0,00	1,00	IV	L50x5	4,8	4,6	1,53	0,98	58	1,00	58	59	200	0,763	0,75	1234	3400	1xM165,8	2,0	4,0
Ω	рс	3	-3,20	3,20	0,00	0,00	1,00	IV	L50x5	4,8	4,6	1,53	0,98	80	0,99	79	81	200	0,590	0,75	1507	3400	1xM165,8	2,0	4,0
раверса	рα	4	-2,70	2,70	0,00	0,00	1,00	IV	L50x5	4,8	4,6	1,53	0,98	50	0,73	37	37	200	0,894	0,75	839	3400	1xM165,8	2,0	4,0
	рα	5	-3,50	0,00	0,00	0,00	1,00		T150x135	18,1	72,8	9,07	5,18	50	1,00	50	10	120	1,000	1,00	193	2400	2xM208,8	2,0	17,8
<u> </u>	m	6	0,00	15,40	0,00	0,00	1,00	11	ø32	8	0,5	0,80	0,80	434	1,00	434	-	-	-	0,90	2128	2300	1xM248,8	2,0	30,6
2	n	11	-31,40	2,00	0,00	0,00	1,00	V	[16П	18,1	72,8	6,44	2,00	130	1,00	130	20	120	1,000	1,00	1735	2400	1xM48C355	2,0	35,3
ω <u>'</u>	рс	12	-1,90	1,90	0,00	0,00	1,00	V	L50x5	4,8	4,6	1,53	0,98	58	1,00	58	59	120	0,763	0,75	692	3400	1xM165,8	2,0	4,3
TP2	рс	13	-1,95	1,80	0,00	0,00	1,00	V	L50x5	4,8	4,6	1,53	0,98	77	0,73	56	57	200	0,776	0,75	698	3400	1xM165,8	2,0	4,0
וכם	рα	14	-0,40	1,20	0,00	0,00	1,00	V	L50x5	4,8	4,6	1,53	0,98	50	0,73	37	37	200	0,894	0,90	278	3400	1xM165,8	2,0	4,0
раверс	рα	15	-1,50	1,40	0,00	0,00	1,00	II	T150x135	18,1	72,8	9,07	5,18	50	1,00	50	10	250	1,000	1,00	83	2400	2xM20_8,8	2,0	17,8
Трс	m	16	0,00	9,10	0,00	0,00	1,00	II	ø24	4,5	1,6	0,50	0,50	434	1,00	434	-	-	-	1,00	2012	2300	1xM245,8	2,0	7,1
	m	17	0,00	6,60	0,00	0,00	1,00	III	ø24	4,5	1,6	0,50	0,50	820	1,00	820	-	-	-	1,00	1459	2300	1xM165,8	2,0	4,0
ά	n	31,1	-10,53	10,30	1,42	1,85	1,00	VI	[16Π	18,1	72,8	6,44	2,00	350	1,00	350	54	120	0,772	1,00	2052		1xM48C355		33,2
10Ū	рα	31.2	-0,20	0,00	0,20	0,00	1,00	VI	[16П	18,1	72,8	6,44	2,00	52	1,00	52	26	250	0,918	1,00	12	2400	1xM165,8	2,0	4,0
:остойка С1-3.0	рα	31.3	-0,30	0,00	0,30	0,00	1,00	VI	[16∏	18,1	72,8	6,44	2,00	26	1,00	26	13	250	0,979	1,00	17	2400	1xM165,8	2,0	4,3
poc (рα	31.4	-0,40	0,00	0,00	0,00	1,00	V	[16П	18,1	72,8	6,44	2,00	22	1,00	22	11	250	1,000	1,00	22	2400	1xM165,8	2,0	4,3
<u></u>	п	32	-0,52	2,00	0,25	1,12	1,00	II	2L90x6	21,2	164,2	2,78	2,78	80	1,00	80	29	250	0,878	1,00	3256	3400	2xM205,8	2,0	11,6
Связь Св2	Е	41	0,00	16,95	0,00	0,00	1,00	1	ø34	9,1	0,50	0,85	0,85	1410	1,00	1410	_	-	_	0,90	2074	2300	1xM248,8	2,0	15,3

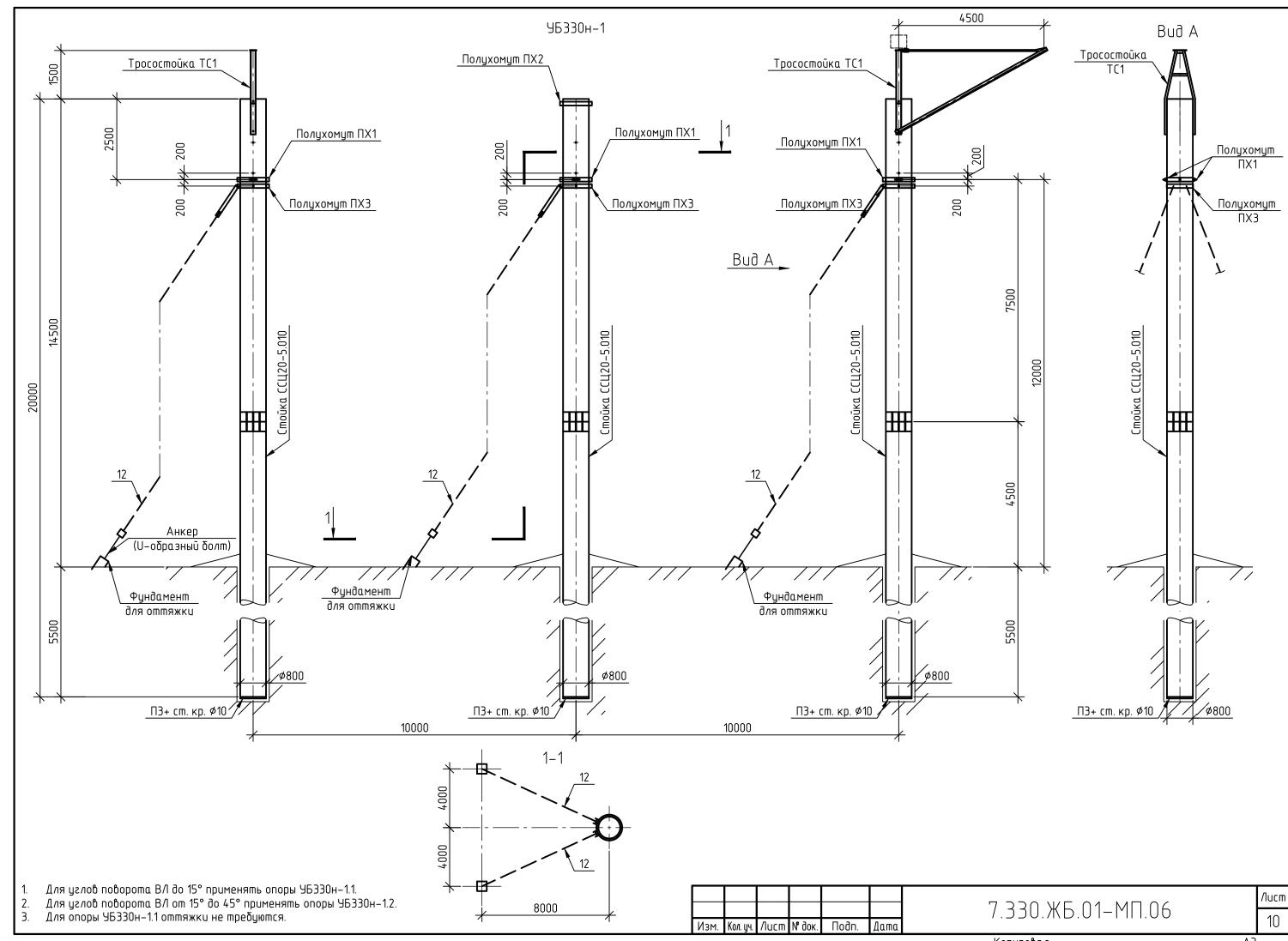
п – пояс;

рс – раскос;

ра – распорка;


д – диафрагма.

2. В графе комбинация загружений в числителе приведен номер комбинации при которой в элементе возникает максимальное сжимающее усилие, в знаменателе — растягивающее. Без дроби указаны номера комбинаций соответствующие максимальному усилию в элементе;

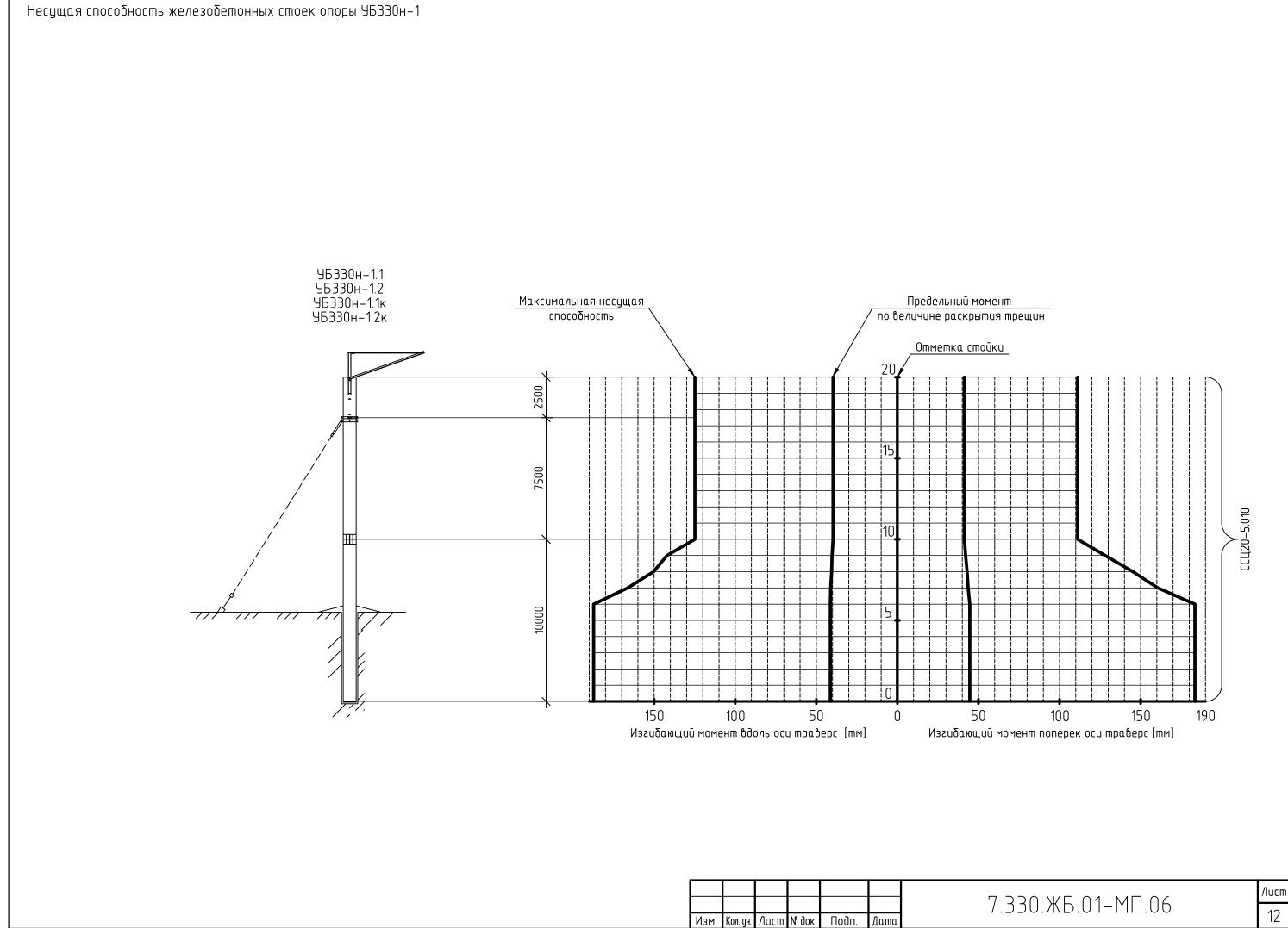

Изм.	Кол. ич.	/lucm	№ док.	Подп.	Дата

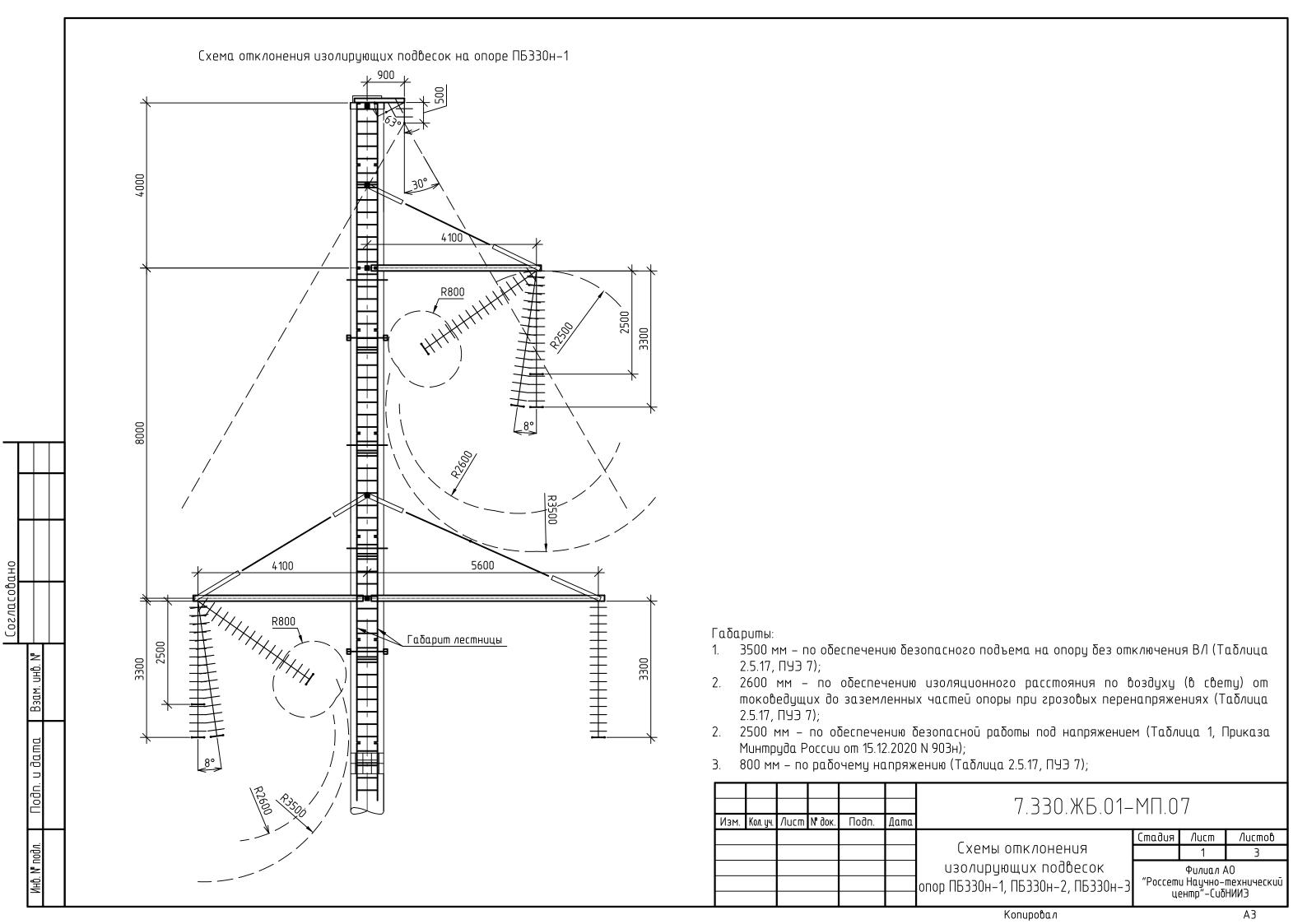
7.330.ЖБ.01-МП.06

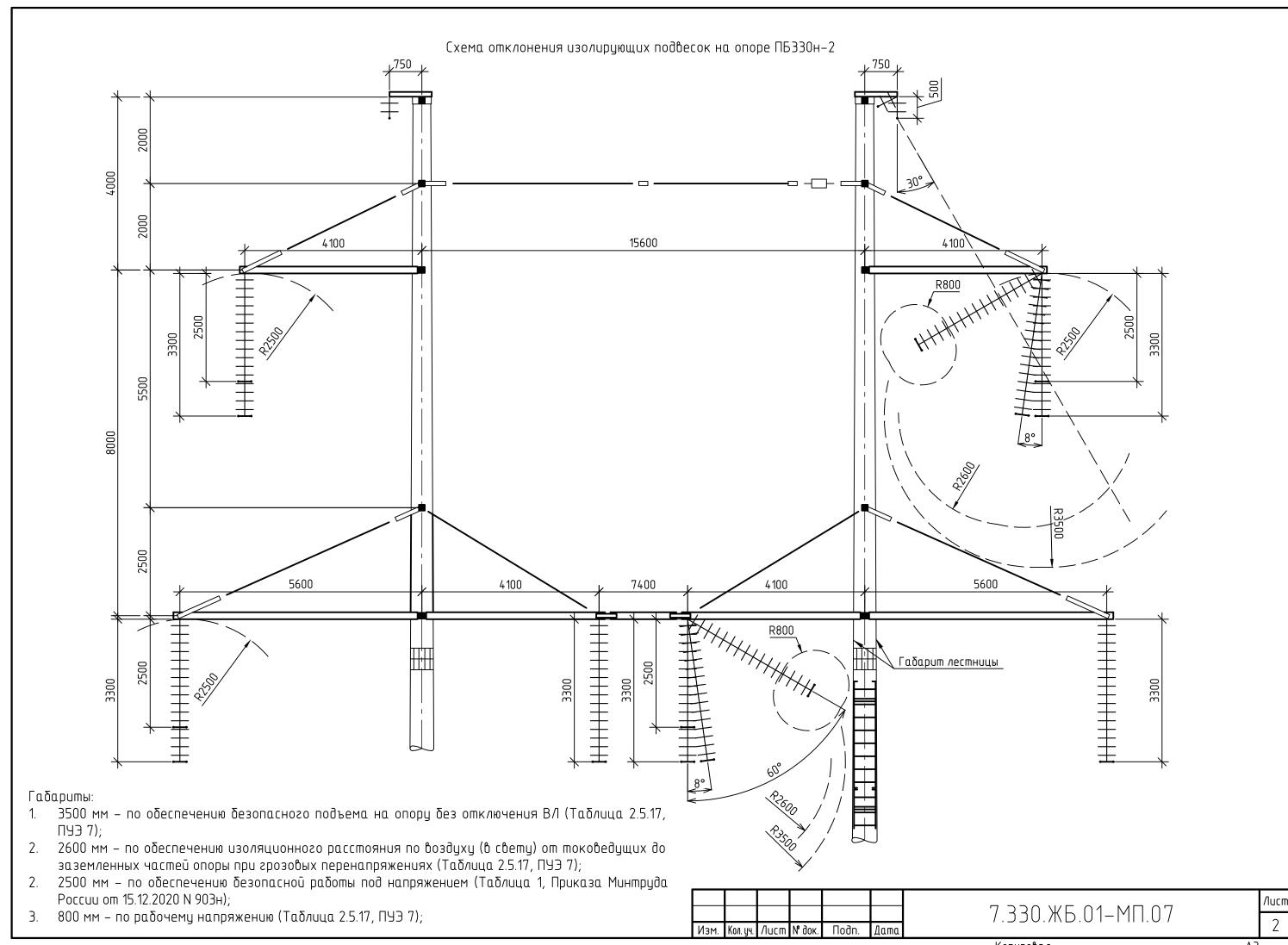
/lucm

Κοπυροδα*π* Α3

											Ποδδοι	р сортаме	нта опоры	УБ330н - 1											
Covina	Tun	Номер	Исж	Npacm	My	Mz	am/ad	Комб.	Сечение	Пл.сеч.,	lmin,	Рад.ине	рц. [см]	L,	К-т расч.	Lef,	,	[λ]	10	К-т усл.	σ	Ry,	Formu	Обрез	Hec. cnoc.
Секция	3/1-MQ	эл-та	[m]	[m]	[mm]	[mm]	מווודעט	загр.	сечение	[cm²]	[cm ⁴]	i _x	i _v	[cm]	длины	[cm]	^	[\(\)]	Ψ	работы	[KZ/CM ²]	[ĸz/cm²]	Болты	оорез	болт. coed. [m]
ı	n	3,1	-9,50	8,50	0,30	4,10	1,00	II	[22∏	26,7	178	8,90	2,58	155	1,00	155	17	120	0,958	1,00	2113	2400	1xM36C355	2,0	17,8
ойка 2	рα	3.2	-3,39	3,40	0,00	0,00	1,00	IV	[22∏	26,7	178	8,90	2,58	53	1,00	53	21	120	0,943	1,00	127	2400	-	-	-
ост ТС1.	Π	4	-3,20	3,20	0,00	0,00	1,00		L125x8	19,7	122	3,87	2,49	516	1,00	516	207	120	0,109	1,00	595	3400	2xM165,8	2,0	7,7
))]	рα	5	-1,95	0,00	0,00	0,00	1,00	II	L40x4	3,1	1,9	1,22	0,78	45	1,00	45	58	200	0,774	0,90	649	3400	1xM12_5,8	2,0	2,4
	П	6	0,00	0,66	0,00	0,00	1,00	Ш	ø10	0,8	0,3	0,40	0,40	450	1,00	450	-	-	-	0,90	934	2500	1xM165,8	2,0	4,3
ם	П	3.1	-4,50	0,00	0,21	2,65	1,00	III	[18∏	20,7	100	7,26	2,06	410	1,00	410	56	121	0,901	1,00	2267	2400	1xM36C355	2,0	17,8
о <u>й</u> кс 1	рα	3.2	-1,64	0,00	0,00	0,00	1,00	VI	[18∏	20,7	100	7,26	2,06	130	1,00	130	18	120	1,000	1,00	92	2400	-	-	_
ост(П	4	-1,90	1,90	0,00	0,00	1,00	III	L125x8	19,7	122	3,87	2,49	516	1,00	516	207	120	0,109	0,75	1177	3400	2xM165,8	2,0	18,5
))]	рα	5	-1,95	1,80	0,00	0,00	1,00	III	L40x4	3,1	1,9	1,22	0,78	45	0,73	33	42	200	0,869	0,75	971	3400	1xM12_5,8	2,0	2,4
Ι	n	6	-0,40	0,66	0,00	0,00	1,00	III	ø10	0,8	0,3	0,40	0,40	450	1,00	450	_	_	-	0,90	934	2500	1xM165,8	2,0	4,3
Omms	яжкα	80	0.0	23.0	0.0	0.0		·			/Ihe hemhi	I KU HU MU	18 5_B_C	-1860 FOO	T 3064-8	N Pasn	ывное п	CHALLE OF	and hemf	וו גמאמשנ	Rpaз = 3	10 3 mc			


п – пояс;


рс – раскос; ра – распорка; д – диафрагма.


Изм.	Кол. уч.	/lucm	№ док.	Подп.	Дата

7.330.ЖБ.01-МП.06

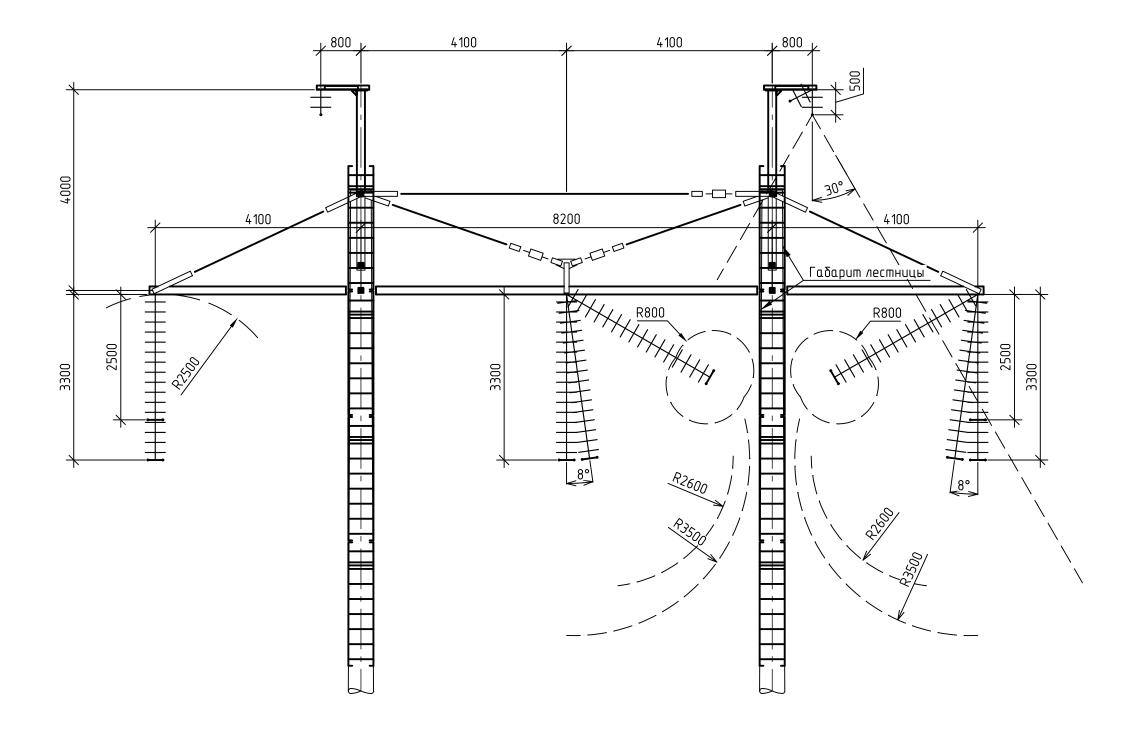
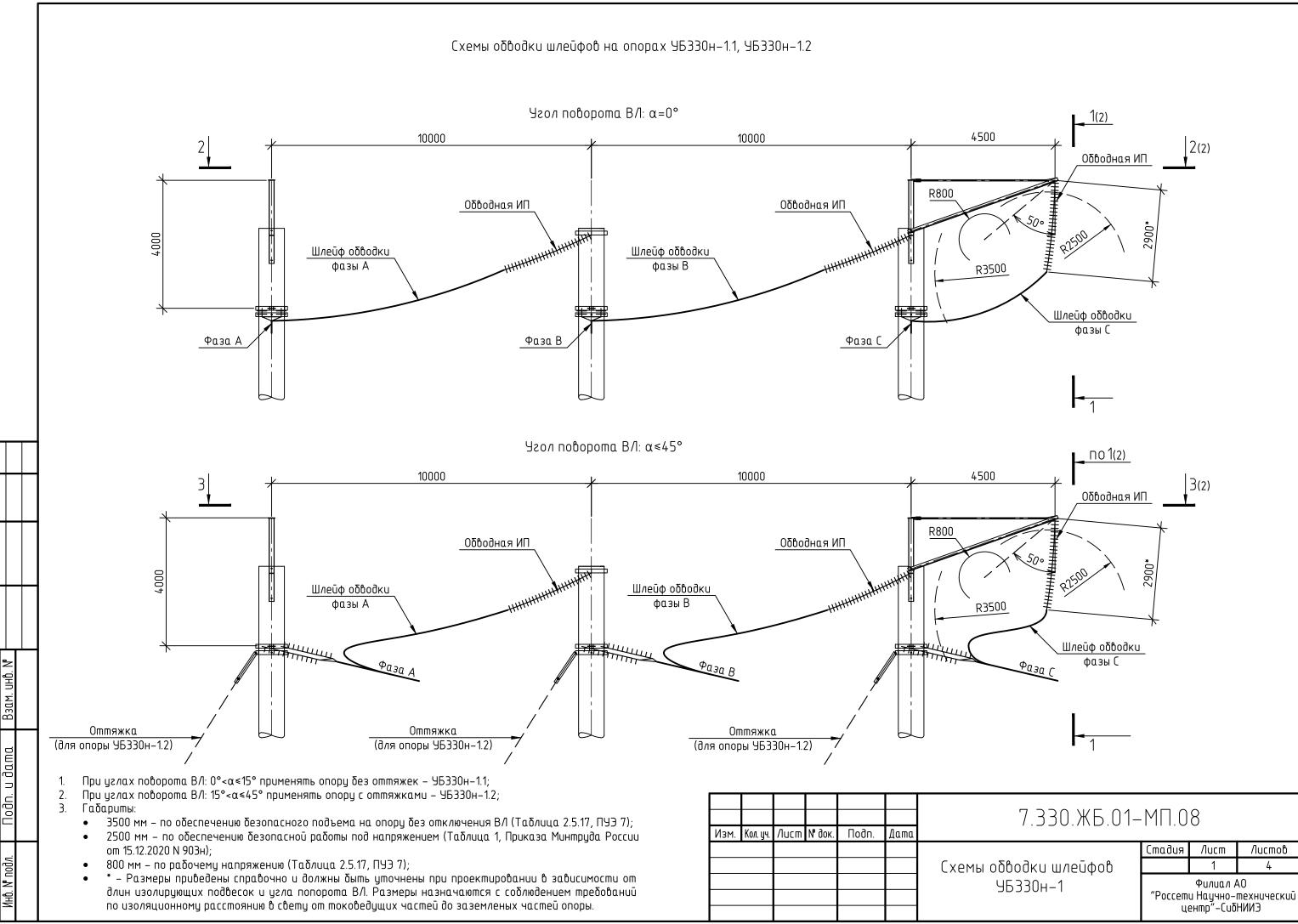

/1ucm 11

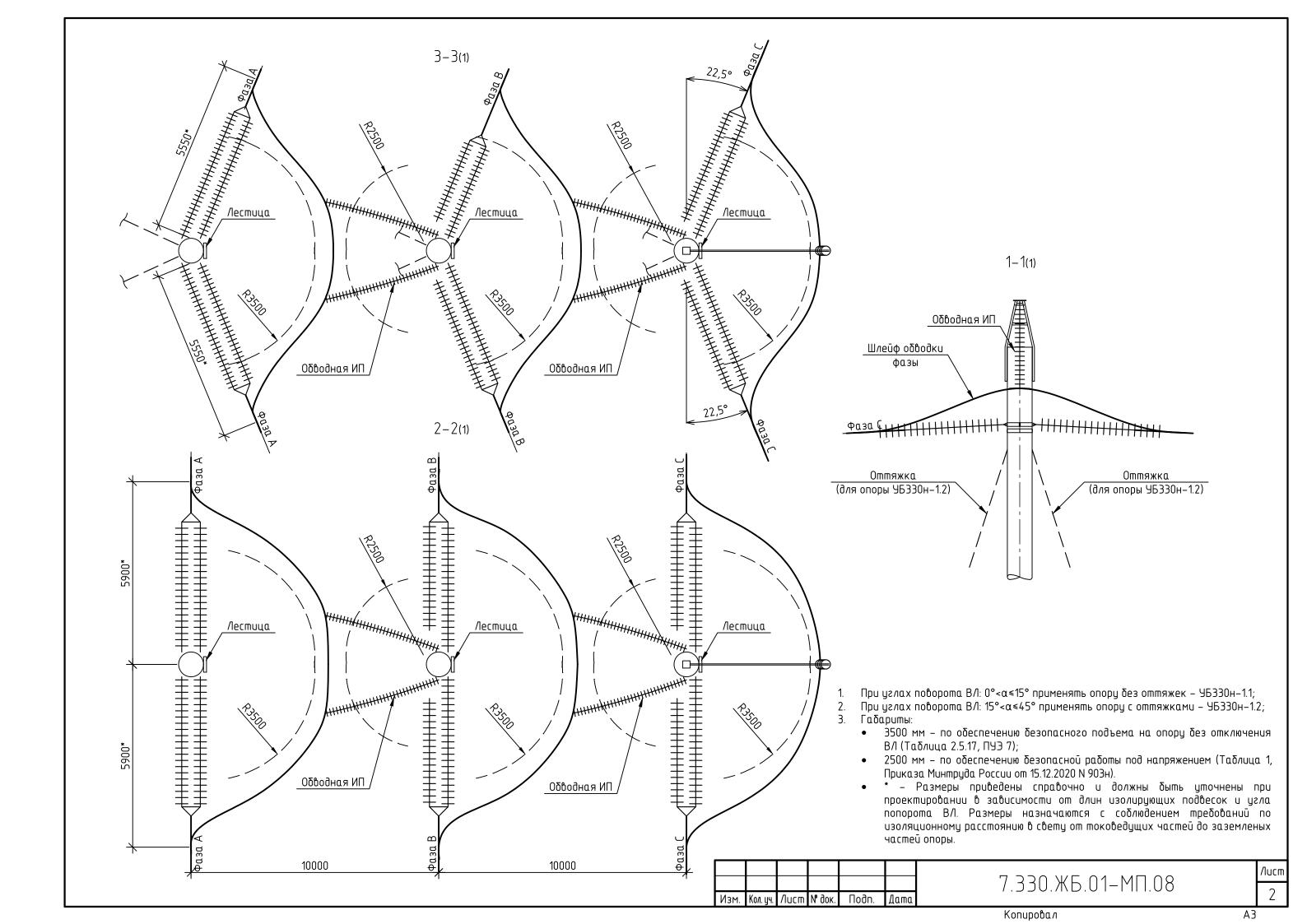
Схема отклонения изолирующих подвесок на опоре ПБЗЗОн-З

Габариты:

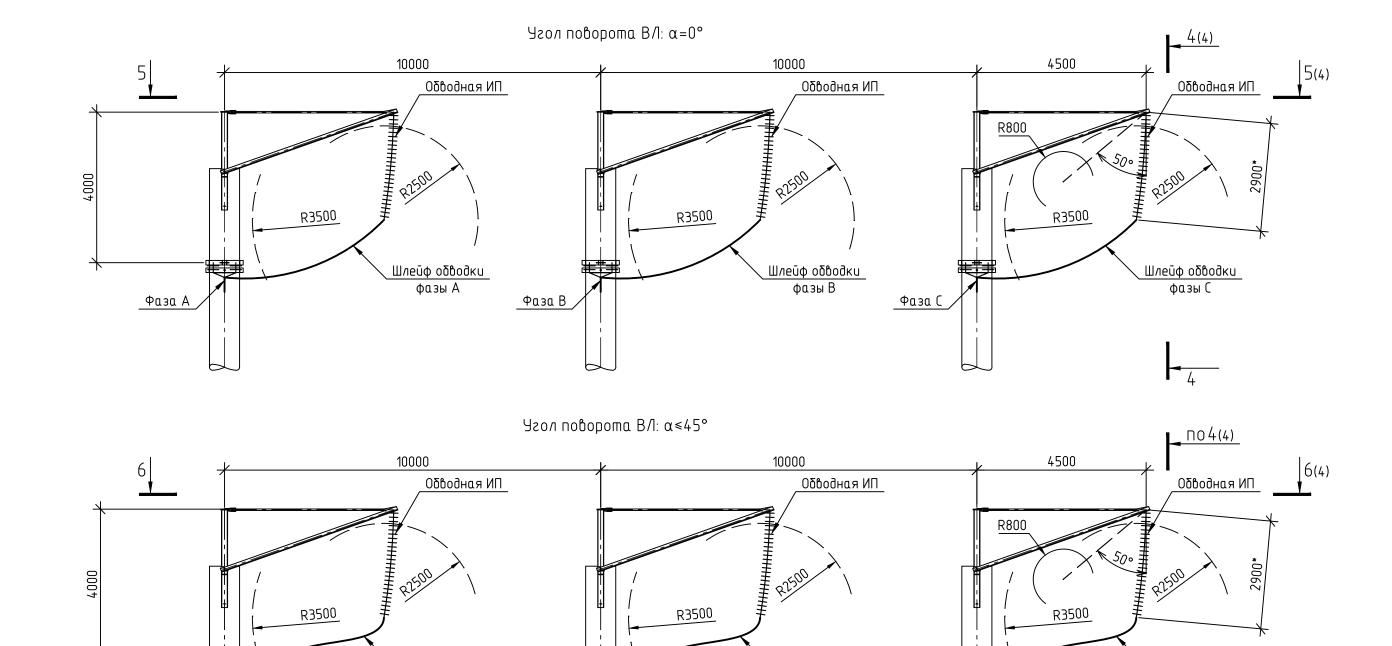
- 1. 3500 мм по обеспечению безопасного подъема на опору без отключения ВЛ (Таблица 2.5.17, ПЧЭ 7):
- 2. 2600 мм по обеспечению изоляционного расстояния по воздуху (в свету) от токоведущих до заземленных частей опоры при грозовых перенапряжениях (Таблица 2.5.17, ПУЭ 7);
- 2. 2500 мм по обеспечению безопасной работы под напряжением (Таблица 1, Приказа Минтруда России от 15.12.2020 N 903н);
- 3. 800 мм по рабочему напряжению (Таблица 2.5.17, ПУЭ 7);


						-
Изм	Kon uu	Jucm	N _b goκ	Подп.	Лата	
71511.	INO/II. Y 1.	710011	IN OOK.	110011.	дана	

7.330.ЖБ.01-МП.07


/lui

Α3


Копировал

Согласовано

Схемы обводки шлейфов на опорах УБЗЗОн-1.1, УБЗЗОн-1.2

1. При углах поворота ВЛ: 0°<α≤15° применять опору без оттяжек – УБЗЗОн-1.1к;

- 2. При углах поворота ВЛ: 15°<α≤45° применять опору с оттяжками УБЗЗОн-1.2к;
- 3. Габариты:

Оттяжка

(для опоры УБЗЗОн-1.2к)

• 3500 мм – по обеспечению безопасного подъема на опору без отключения ВЛ (Таблица 2.5.17, ПУЭ 7);

Шлейф обводки

фазы А

Оттяжка

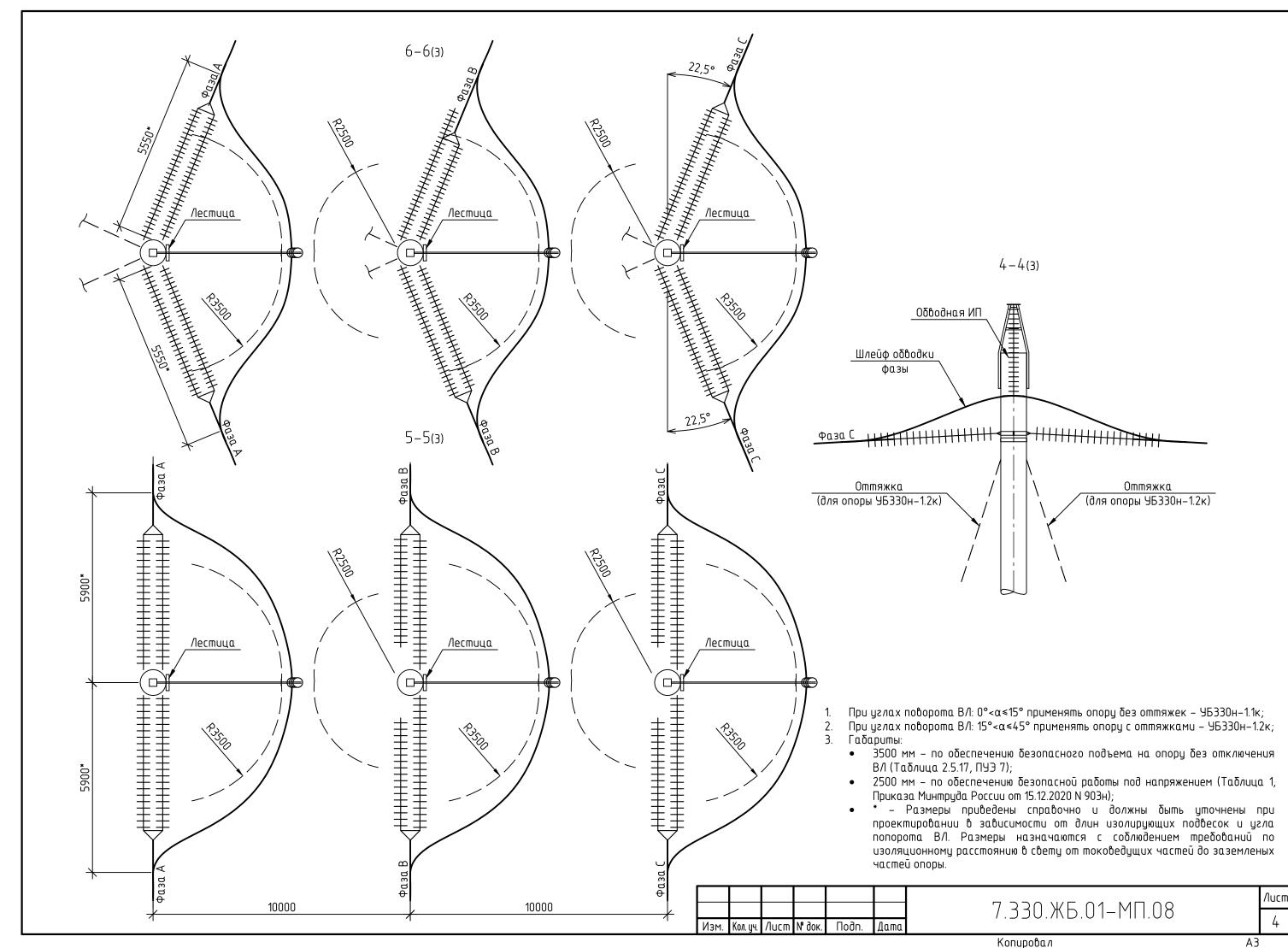
(для опоры УБ330н-1.2к)

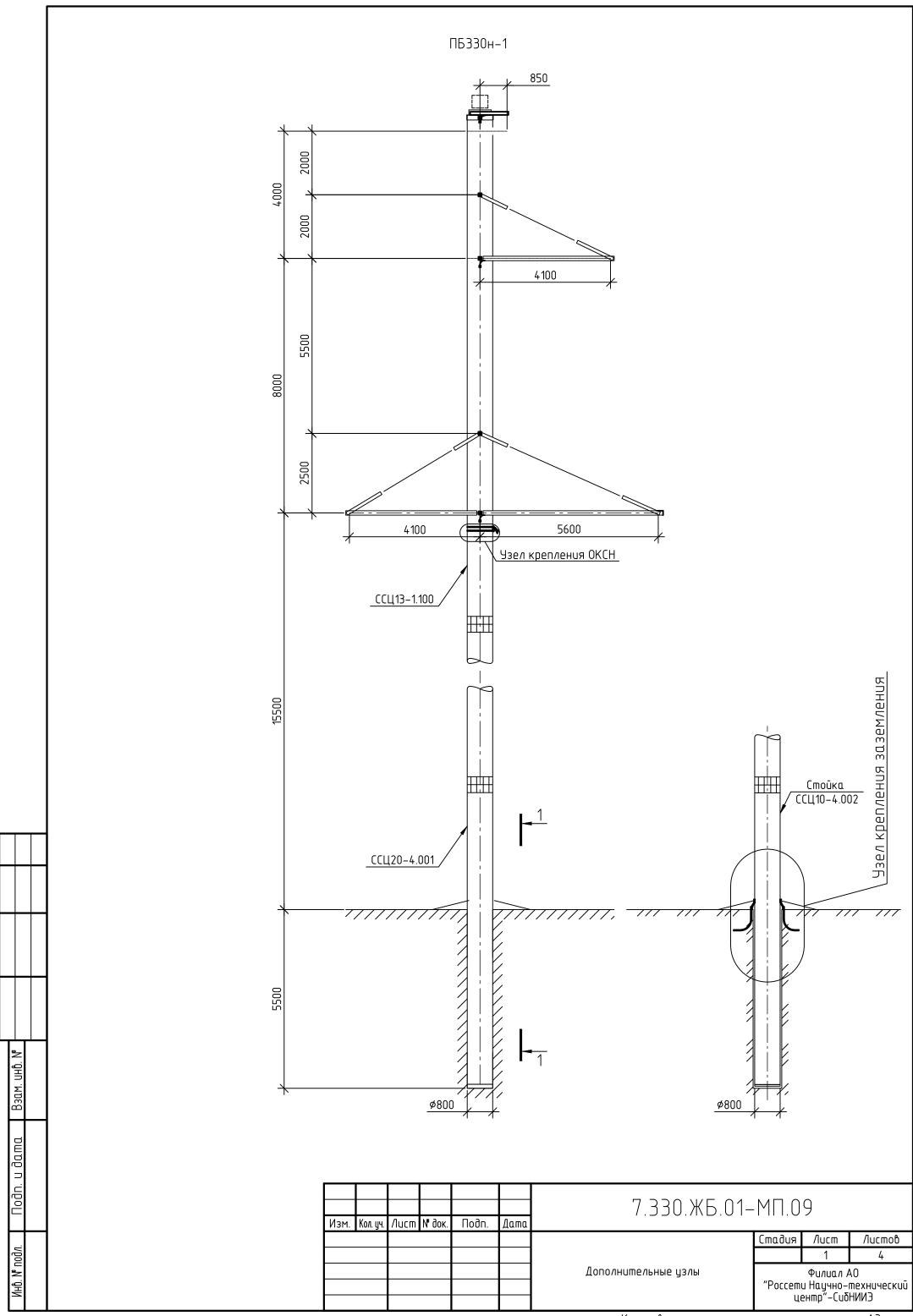
- 2500 мм по обеспечению безопасной работы под напряжением (Таблица 1, Приказа Минтруда России от 15.12.2020 N 903н);
- 800 мм по рабочему напряжению (Таблица 2.5.17, ПУЭ 7);
- * Размеры приведены справочно и должны быть уточнены при проектировании в зависимости от длин изолирующих подвесок и угла попорота ВЛ. Размеры назначаются с соблюдением требований по изоляционному расстоянию в свету от токоведущих частей до заземленых частей опоры.

						Г
						ı
						ı
Изм.	Кол. уч.	Nucm	№ док.	Подп.	Дата	

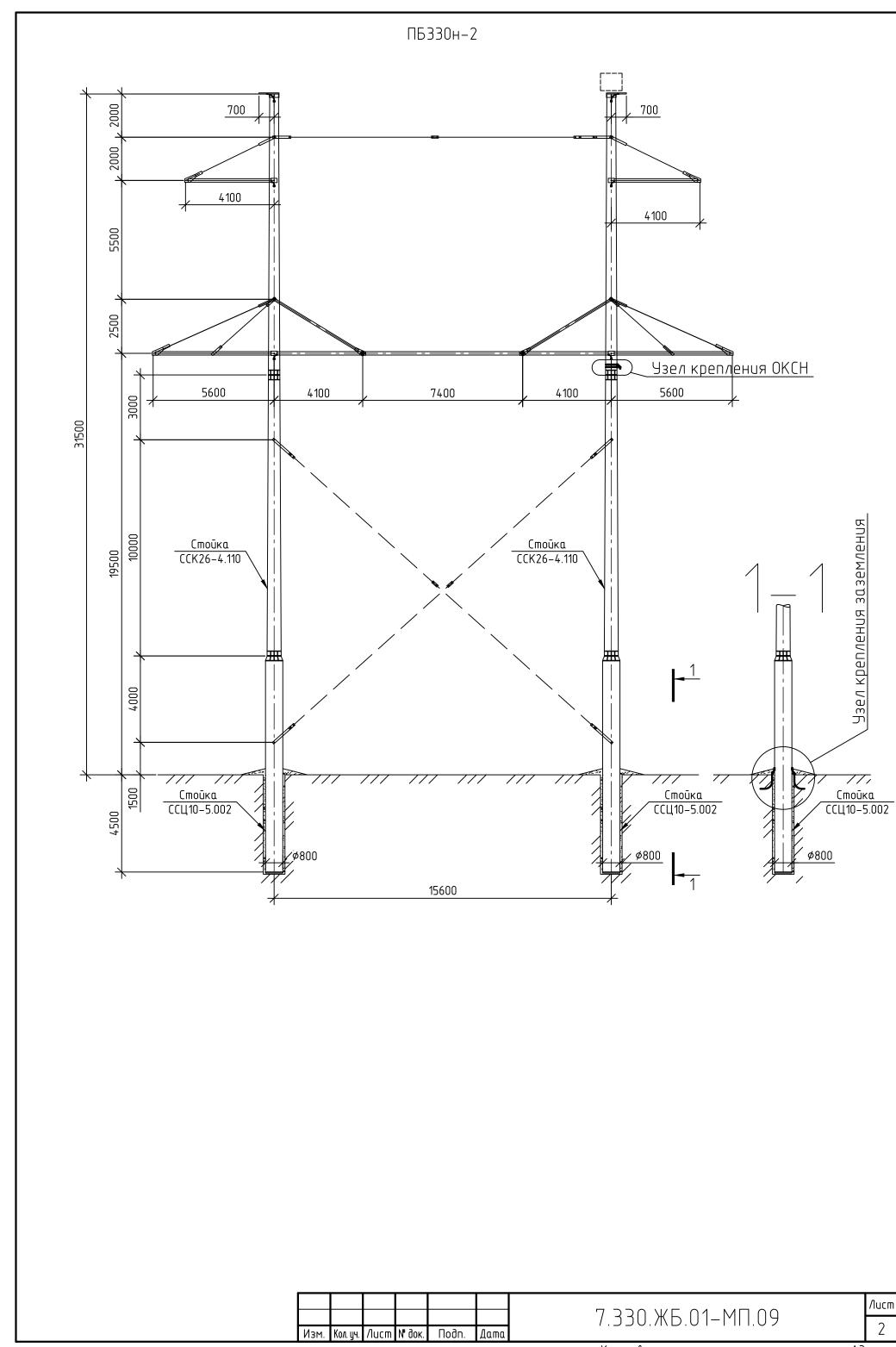
Шлейф обводки

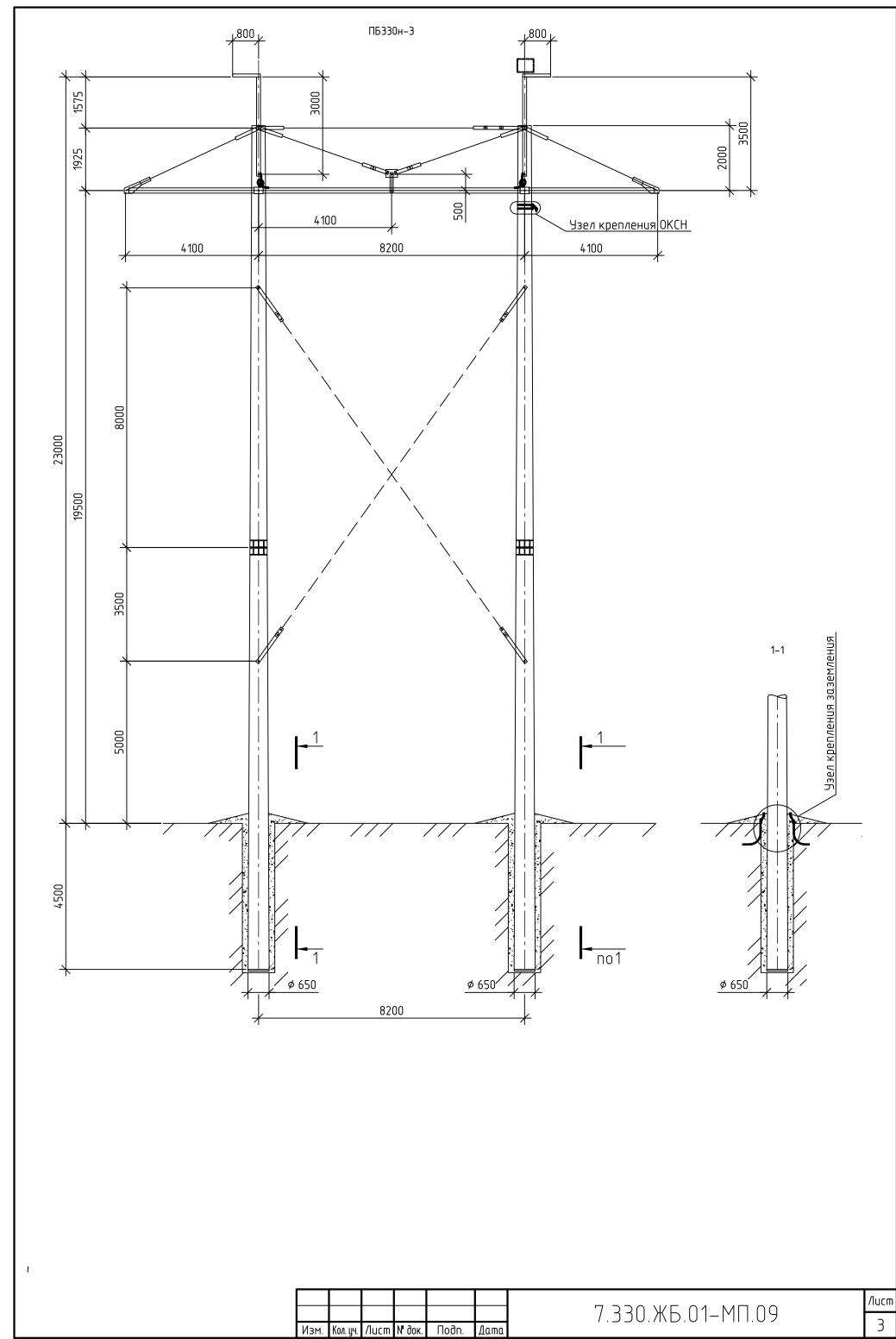
Оттяжка

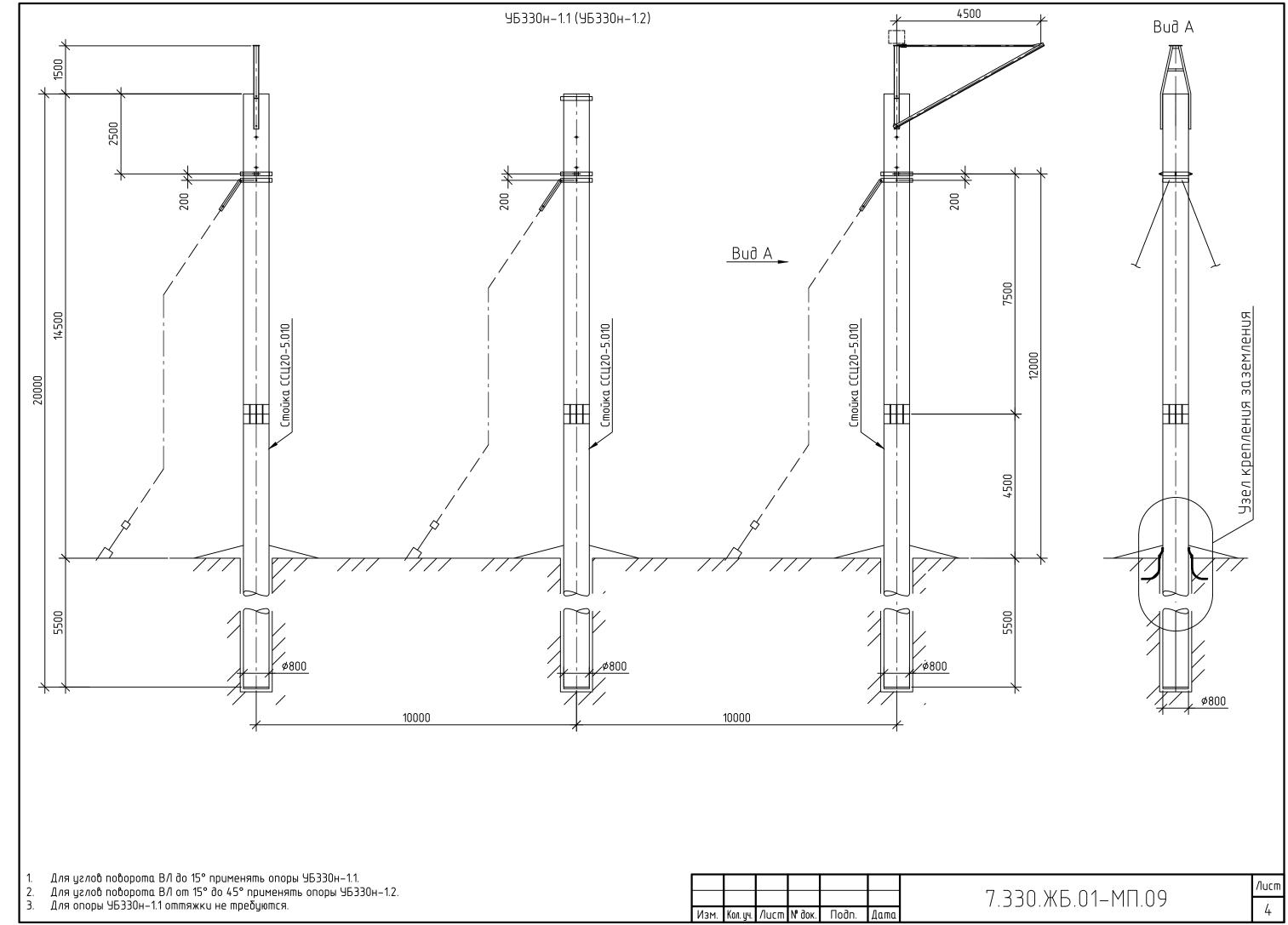

(для опоры УБ330н-1.2к)


7.330.ЖБ.01-МП.08

Шлейф обводки


фазы С


Лист



Согласовано

